Show simple item record

dc.creatorLütke, Sabrina
dc.creatorPerondi, Daniele
dc.creatorM. Machado, Lauren M.
dc.creatorGodinho, Marcelo
dc.creatorS. Oliveira, Marcos L.
dc.creatorCollazzo, Gabriela
dc.creatorDotto, Guilherme Luiz
dc.date.accessioned2020-09-29T21:32:43Z
dc.date.available2020-09-29T21:32:43Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7133
dc.description.abstractThe application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol.spa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceJournal of Environmental Chemical Engineeringspa
dc.subject2-chlorophenolspa
dc.subjectAdsorptionspa
dc.subjectBiocharspa
dc.subjectMalt bagassespa
dc.subjectPyrolysisspa
dc.titleTreatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biocharsspa
dc.typePreprintspa
dcterms.references[1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus brevi florus: a potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/ 10.1016/j.jece.2015.12.012.spa
dcterms.references[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j. jece.2018.01.051.spa
dcterms.references[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.spa
dcterms.references[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876, https://doi.org/10.1016/j.jwpe.2019.100876.spa
dcterms.references[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j. eti.2018.05.006.spa
dcterms.references[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/ 10.1016/j.jenvman.2019.04.004.spa
dcterms.references[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.spa
dcterms.references[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C. P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j. molliq.2016.09.032.spa
dcterms.references[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/ 10.1016/j.jclepro.2017.10.007.spa
dcterms.references[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363.spa
dcterms.references[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G. L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040.spa
dcterms.references[12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´ an, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j. micromeso.2015.01.052.spa
dcterms.references[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.spa
dcterms.references[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/ 10.1016/j.biortech.2009.10.031.spa
dcterms.references[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19) 30022-8.spa
dcterms.references[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G. C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104, https://doi.org/10.1016/j.wasman.2020.05.038.spa
dcterms.references[17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G. L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027.spa
dcterms.references[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.spa
dcterms.references[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.spa
dcterms.references[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027.spa
dcterms.references[22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of environmental chemical engineering preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396.spa
dcterms.references[23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117.spa
dcterms.references[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.spa
dcterms.references[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.spa
dcterms.references[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review, J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j. jece.2013.09.017.spa
dcterms.references[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜ Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi. org/10.1016/j.aca.2017.11.042.spa
dcterms.references[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/ Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j. jhazmat.2013.11.057.spa
dcterms.references[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.spa
dcterms.references[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020.spa
dcterms.references[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049.spa
dcterms.references[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055.spa
dcterms.references[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption characteristics of congo red from aqueous solution onto tea waste, Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/ 00986445.2013.836633.spa
dcterms.references[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.spa
dcterms.references[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041.spa
dcterms.references[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/ S0301-7036(14)70853-3.spa
dcterms.references[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi. org/10.1016/j.chemosphere.2020.126248.spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2213343720308228spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal