Mostrar el registro sencillo del ítem

dc.contributor.authorSagastume, Alexisspa
dc.contributor.authorCabello Eras, Juan Joséspa
dc.contributor.authorSousa Santos, Vladimirspa
dc.contributor.authorCabello Ulloa, Mario Javierspa
dc.date.accessioned2020-10-15T16:31:05Z
dc.date.available2020-10-15T16:31:05Z
dc.date.issued2020
dc.identifier.issn03605442spa
dc.identifier.urihttps://hdl.handle.net/11323/7144spa
dc.description.abstractThe use of compressed air in industry is an important and yet overlooked energy carrier. Although there are different energy-saving measures discussed in the specialized literature, there is little discussion on the energy performance of the production and use of compressed air. This study developed a new approach to assess the energy performance of compressed air systems based on a six-step local energy benchmarking methodology. The methodology includes an energy management procedure to monitor and control the electricity consumption and sustain the energy performance of compressed air systems in time. The procedure monitors the production and use of compressed at plant and at manufacturing section levels based on the real-time monitoring of relevant variables to calculate energy performance indicators, energy baselines, and CUSUM charts. Monitoring the consumption of compressed air at the section level in a case study reduced the demand between 11 and 47%. While electricity consumption to produce compressed air at the plant level reduced by an estimated 23%. This approach permits the rapid detection of inefficiencies in the production and demand sides of the compressed air system, highlighting inefficiencies that are frequently hidden in the total electricity consumption of manufacturing plantsspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceEnergyspa
dc.subjectCompressed airspa
dc.subjectCompressorsspa
dc.subjectEnergy efficiencyspa
dc.subjectEnergy managementspa
dc.titleEnergy management of compressed air systems. Assessing the production and use of compressed air in industryspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0360544220317709spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Nehler T. Linking energy efficiency measures in industrial compressed air systems with non-energy benefits e a review. Renew Sustain Energy Rev 2018;89. https://doi.org/10.1016/j.rser.2018.02.018.spa
dc.relation.references[2] M asa V, Kuba P. Efficient use of compressed air for dry ice blasting. J Clean Prod 2016;111:76e84. https://doi.org/10.1016/j.jclepro.2015.07.053.spa
dc.relation.references[3] Saidur R, Rahim NA, Hasanuzzaman M. A review on compressed-air energy use and energy savings. Renew Sustain Energy Rev 2010;14:1135e53. https:// doi.org/10.1016/j.rser.2009.11.013.spa
dc.relation.references[4] Yang M. Air compressor efficiency in a Vietnamese enterprise. Energy Pol 2009;37:2327e37. https://doi.org/10.1016/j.enpol.2009.02.019.spa
dc.relation.references[5] Zahlan J, Asfour S. A multi-objective approach for determining optimal air compressor location in a manufacturing facility. J Manuf Syst 2015;35: 176e90. https://doi.org/10.1016/j.jmsy.2015.01.003.spa
dc.relation.references[6] Mousavi S, Kara S, Kornfeld B. Energy efficiency of compressed air systems. Procedia CIRP 2014;15:313e8. https://doi.org/10.1016/j.procir.2014.06.026.spa
dc.relation.references[7] Abdelaziz EA, Saidur R, Mekhilef S. A review on energy saving strategies in industrial sector. Renew Sustain Energy Rev 2011;15:150e68. https://doi.org/ 10.1016/j.rser.2010.09.003.spa
dc.relation.references[8] Marshall RC. Optimization of single-unit compressed air systems,» Energy Engineering. J Assoc Energy Eng 2011;1:10e35. https://doi.org/10.1080/ 01998595.2012.1043657.spa
dc.relation.references[9] McKane A, Hasanbeigi A. Motor systems energy efficiency supply curves: a methodology for assessing the energy efficiency potential of industrial motor systems. Energy Pol 2011;39:6595e607. https://doi.org/10.1016/ j.enpol.2011.08.004.spa
dc.relation.references[10] Energy and mining planning unit (UPME). National energy plan 2050; 2015 (in Spanish) :184.spa
dc.relation.references[11] Dindorf R. Estimating potential energy savings in compressed air systems. Procedia Eng 2012;39:204e11. https://doi.org/10.1016/j.proeng.2012.07.026.spa
dc.relation.references[12] Akhtar SS, Edwards P. The path to sustainable, optimized compressed air systems. Conf. Proc. - IEEE-IAS/PCA Cem. Ind. Tech. Conf. April, 2019;2019: 1e8. https://doi.org/10.1109/CITCON.2019.8729101.spa
dc.relation.references[13] Kaya D, Phelan P, Chau D, Sarac HI. Energy conservation in compressed-air systems. Int J Energy Res 2002;26:837e49. https://doi.org/10.1002/er.823.spa
dc.relation.references[14] Neale JR, Kamp PJJ. Compressed air system best practice programmes: what needs to change to secure long-term energy savings for New Zealand? Energy Pol 2009;37:3400e8. https://doi.org/10.1016/j.enpol.2009.04.047.spa
dc.relation.references[15] Mascarenhas J dos S, Chowdhury H, Thirugnanasambandam M, Chowdhury T, Saidur R. Energy, exergy, sustainability, and emission analysis of industrial air compressors. J Clean Prod 2019;231:183e95. https://doi.org/10.1016/ j.jclepro.2019.05.158.spa
dc.relation.references[16]Seslija DD, Milenkovi c IM, Dudi c SP, Sulc JI. Improving energy efficiency in compressed air systems practical experiences. Therm Sci 2016;20:S355e70. https://doi.org/10.2298/TSCI151110022S.spa
dc.relation.references[17] British Compressed Air Society Ltd. Good practice guide: energy efficient compressed air systems. London, United Kingdom: Carbon Trust; 2005.spa
dc.relation.references[18] Harris J. Investment in energy efficiency: a survey of Australian firms. Energy Pol 2000;12:867e76. https://doi.org/10.1016/S0301-4215(00)00075-6.spa
dc.relation.references[19] Tempiam A, Kachapongkun P, Rattanadecho P, Prommas R. Experimental investigation of vortex tube for reduction air inlet of a reciprocating air compressor. Case Stud Therm Eng 2020;19. https://doi.org/10.1016/ j.csite.2020.100617.spa
dc.relation.references[20] Stowe ML. Energy savings in compressed air systems. 2017.spa
dc.relation.references[21] Zeelie LE, Van Rensburg JF, Breytenbach WJJ. Compressed air energy savings on an iron production plant. Proc Conf Ind Commer Use Energy, ICUE 2017. https://doi.org/10.23919/ICUE.2017.8067990.spa
dc.relation.references[22] Cilliers C. Benchmarking electricity use of deep-level mine compressors. Proc13th Conf Ind Commer Use Energy; 2016. ICUE 2016:1e6. 9781-509056231.spa
dc.relation.references[23] Brunke JC, Johansson M, Thollander P. Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Jspa
dc.relation.references[24] Sagastume A, Cabello JJ, Sousa V, Hern andez H, Hens L, Vandecasteele C. Electricity management in the production of lead-acid batteries: the industrial case of a production plant in Colombia. J Clean Prod 2018;198:1443e58. https://doi.org/10.1016/j.jclepro.2018.07.105.spa
dc.relation.references[25] May G, Stahl B, Taisch M, Kiritsis D. Energy management in manufacturing: from literature review to a conceptual framework. J Clean Prod 2017;167: 1464e89. https://doi.org/10.1016/j.jclepro.2016.10.191.spa
dc.relation.references[26] Jovanovi c B, Filipovi c J, Baki c V. Energy management system implementation in Serbian manufacturing e plan-Do-Check-Act cycle approach. J Clean Prod 2017;162:1144e56. https://doi.org/10.1016/j.jclepro.2017.06.140.spa
dc.relation.references[27] Cabello JJ, Sousa V, Sagastume A, Guerra MA, Haeseldonckx D, Vandecasteele C, et al. Tools to improve forecasting and control of the electricity consumption in hotels. J Clean Prod 2016;137:803e12. https://doi.org/ 10.1016/j.jclepro.2016.07.192.spa
dc.relation.references[28] Fernando Y, Hor WL. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of malaysian manufacturing firms. Resour Conserv Recycl 2017;126:62e73. https://doi.org/ 10.1016/j.resconrec.2017.07.023.spa
dc.relation.references[29] Firdaus N, Samat HA, Mohamad N. Maintenance for energy efficiency: a review. IOP Conf Ser Mater Sci Eng 2019;530. https://doi.org/10.1088/1757- 899X/530/1/012047.spa
dc.relation.references[30] Nehler T, Parra R, Thollander P. Implementation of energy efficiency measures in compressed air systems: barriers, drivers and non-energy benefits. Energy Effic 2018;11:1281e302. https://doi.org/10.1007/s12053-018-9647-3.spa
dc.relation.references[31] Gordi c D, Babi c M, Jovici c N, Sustersic V, Koncalovi c D, Jeli c D. Development of energy management system - case study of Serbian car manufacturer. Energy Convers Manag 2010;51:2783e90. https://doi.org/10.1016/ j.enconman.2010.06.014.spa
dc.relation.references[32] Madrigal JA, Cabello Eras JJ, Hernandez Herrera H, Sousa Santos V, Balbis Morejon M. Plani ficacion energ etica para el ahorro de fueloil en una lav- andería industrial. Ingeniare Rev Chil Ing 2018;26:86e96. https://doi.org/ 10.4067/s0718-33052018000100086.spa
dc.relation.references[33] Goldberg A, Reinaud J, Taylor RP. Promotion systems and incentives for adoption of energy management systems in industry: some international lessons learned relevant for China. 2011.spa
dc.relation.references[34] Cai W, Liu F, Dinolov O, Xie J, Liu P, Tuo J. Energy benchmarking rules in machining systems. Energy 2018;142:258e63. https://doi.org/10.1016/ j.energy.2017.10.030.spa
dc.relation.references[35] Zhou N, Khanna NZ, Ke J, Price L, McNeil M. Analysis and practices of energy benchmarking for industry from the perspective of systems engineering. Energy 2013;54:32e44. https://doi.org/10.1016/j.energy.2013.03.018.spa
dc.relation.references[36] Bennett M, Newborough M. Auditing energy use in cities. Energy Pol 2001;29: 125e34. https://doi.org/10.1016/S0301-4215(00)00108-7.spa
dc.relation.references[37] Garcia AGP, Szklo AS, Schaeffer R, McNeil MA. Energy-efficiency standards for electric motors in Brazilian industry. Energy Pol 2007;35:3424e39. https:// doi.org/10.1016/j.enpol.2006.11.024.spa
dc.relation.references[39] Boehm R, Franke J. Demand-side-management by flexible generation of compressed air. Procedia CIRP 2017;63:195e200. https://doi.org/10.1016/ j.procir.2017.03.157.spa
dc.relation.references[40] Santolamazza A, Cesarotti V, Introna V. Anomaly detection in energy consumption for Condition-Based maintenance of Compressed Air Generation systems: an approach based on artificial neural networks. IFAC-PapersOnLine 2018;51:1131e6. https://doi.org/10.1016/j.ifacol.2018.08.439.spa
dc.relation.references[41] Benedetti M, Bonfa F, Bertini I, Introna V, Ubertini S. Explorative study on Compressed Air Systems’ energy efficiency in production and use: first steps towards the creation of a benchmarking system for large and energyintensive industrial firms. Appl Energy 2018;227:436e48. https://doi.orgspa
dc.relation.references[42] Benedetti M, Bertini I, Bonf a F, Ferrari S, Introna V, Santino D, et al. Assessingand improving compressed air systems’energy efficiency in production anduse:findings from an explorative study in large and energy-intensive in-dustrialfirms. Energy Procedia 2017;105:3112e7.https://doi.org/10.1016/j.egypro.2017.03.653.spa
dc.relation.references[43] Salvatori S, Benedetti M, Bonf a F, Introna V, Ubertini S. Inter-sectorialbenchmarking of compressed air generation energy performance: method-ology based on real data gathering in large and energy-intensive industrialfirms. Appl Energy 2018;217:266e80.https://doi.org/10.1016/j.apenergy.2018.02.139.spa
dc.relation.references[44] Bonf a F, Salvatori S, Benedetti M, Introna V, Ubertini S. Monitoring com-pressed air systems energy performance in industrial production: lessonlearned from an explorative study in large and energy-intensive industrialfirms. Energy Procedia 2017;143:396e403.https://doi.org/10.1016/j.egypro.2017.12.702.spa
dc.relation.references[45] Benedetti M, Bonf a F, Introna V, Santolamazza A, Ubertini S. Real time energyperformance control for industrial compressed air systems: methodology andapplications. Energies 2019;12.https://doi.org/10.3390/en12203935.spa
dc.relation.references[46] Bonf a F, Benedetti M, Ubertini S, Introna V, Santolamazza A. New efficiencyopportunities arising from intelligent real time control tools applications: thecase of compressed air systems’energy efficiency in production and use.Energy Procedia; 2019. p. 4198e203.https://doi.org/10.1016/j.egypro.2019.01.809.spa
dc.relation.references[47] du Plooy D, Mar e P, Marais J, Mathews MJ. Local benchmarking in mines tolocate inefficient compressed air usage. Sustain Prod Consum 2019;17:126e35.https://doi.org/10.1016/j.spc.2018.09.010.spa
dc.relation.references[48] May G, Stahl B, Taisch M, Kiritsis D. Energy management in manufacturing:from literature review to a conceptual framework. J Clean Prod 2017;167:1464e89.https://doi.org/10.1016/j.jclepro.2016.10.191.spa
dc.relation.references[49] Mousavi S, Kara S, Kornfeld B. A hierarchical framework for concurrentassessment of energy and water efficiency in manufacturing systems. J CleanProd 2016;133:88e98.https://doi.org/10.1016/j.jclepro.2016.05.074.spa
dc.relation.references[50]ISO. ISO 50006 - Energy management systemsdmeasuring energy perfor-mance using energy baselines (EnB) and energy performance indicators (EnPI)dgeneral principles and guidance. 2014.spa
dc.relation.references[51] Puranik VS. CUSUM quality control chart for monitoring energy use perfor-mance. 2007.https://doi.org/10.1109/IEEM.2007.4419388.spa
dc.relation.references[52] Jing R, Wang M, Zhang R, Li N, Zhao Y. A study on energy performance of 30commercial office buildings in Hong Kong. Energy Build 2017;144:117e28.https://doi.org/10.1016/j.enbuild.2017.03.042.spa
dc.relation.references[53] Cabello JJ, Sagastume A, Sousa V, Hern andez H, Balbis M, Silva J, et al. Energymanagement in the formation of light, starter, and ignition lead-acid batteries.Energy Effic 2019:1219e36.https://doi.org/10.1007/s12053-018-9741-6.spa
dc.relation.references[54] Flexim. Non-invasive compressed airflow measurementeFLUXUS CA. n.d.https://www.flexim.com/us/products/compressed-air-flowmeters. [Accessed22 January 2020].[55] Elion SA. Tratamiento completo del aire comprimido. n.d,http://www.elion.es/descargar/catalogos/catalogos-representadas/catalogos-pdf/wilkersonG.pdf. [Accessed 22 January 2020].spa
dc.relation.references[56] Dahodwalla H, Herat S. Cleaner production options for lead-acid batterymanufacturing industry. J Clean Prod 2000;8:133e42.https://doi.org/10.1016/S0959-6526(99)00314-5.spa
dc.relation.references[57] Simon X, Chazelet S, Thomas D, B emer D, R egnier R. Experimental study ofpulse-jet cleaning of bagfilters supported by rigid rings. Powder Technol2007;172:67e81.https://doi.org/10.1016/j.powtec.2006.10.005.spa
dc.relation.references[58] Kaelin G. Reduce operating and energy costs and simultaneously assure EPAregulatory compliance with integration of intelligent baghouse control andsensing. IEEE Cement Ind Tech Conf 2013;1e10.https://doi.org/10.1109/CITCON.2013.6525270.spa
dc.relation.references[59]Morine R. A pulse jet dust collector optimization study. Compress Air BestPract 2018;14:16e9.J.J. Cabello Eras, A. Sagastume Guti errez, V. Sousa Santos et al.Energy 213 (2020) 11866213spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal