Show simple item record

dc.creatorBerdugo Sarmiento, Kelly Margarita
dc.date.accessioned2020-10-22T16:33:45Z
dc.date.available2020-10-22T16:33:45Z
dc.date.issued2020
dc.identifier.citationBerdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155spa
dc.identifier.urihttps://hdl.handle.net/11323/7155
dc.descriptionMaestría En Eficiencia Energética Y Energía Renovablespa
dc.description.abstractThe Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control flower flows. The Flexible Systems of Alternating Current are an alternative that allows a dynamic response in the system allowing the control of power flow. This project describes advances and trends in Flexible Alternating Current Transmission Systems (FACTS) technologies and their uses in power systems. it evaluates concepts, properties and applications of power transfer capability during the electrical transportation activity. The review section included a bibliometric analysis using Web of Science (WoS) database considering the techniques used for energy transmission and distribution power system. Otherwise, the paper describes a framework of the different technological variants of FACTS that allows to improve the flexibility conditions in steady state, and to compensate loadability constraints in power lines, considering the potential benefits and other technical-operational aspects. This document evaluates the implementation of FACTS in the Regional Transmission System (STR) of the Department of Atlántico, as a strategy to improve the system's power transfer capacity and the response to the increase in demand projected for the coming years.spa
dc.description.abstractLos Sistemas Eléctricos de Potencia modernos están formados por muchas interconexiones para garantizar un funcionamiento económico y seguro; sin embargo, las líneas de energía de transmisión tienen restricciones técnicas que limitan la transmisión de la electricidad, lo que hace que su flexibilidad sea limitada debido a sus pocas o escasas posibilidades de controlar los flujos de potencia. Los Sistemas Flexibles de Corriente Alterna (FACTS) son una alternativa que permite una respuesta dinámica en el sistema permitiendo el control del flujo de energía. En este proyecto se describen los avances y tendencias de las tecnologías de los FACTS y sus usos en los sistemas de energía. Además, se evalúan conceptos, propiedades y aplicaciones de la capacidad de transferencia de energía durante la actividad de transmisión de electricidad. La sección de revisión incluyó un análisis bibliométrico considerando las técnicas utilizadas para la transmisión de energía y el sistema de distribución de energía eléctrica. Por otra parte, el documento describe un marco de las diferentes variantes tecnológicas de FACTS que permite mejorar las condiciones de flexibilidad en estado estacionario y compensar las limitaciones de capacidad de carga en las líneas eléctricas, considerando los beneficios potenciales y otros aspectos técnico-operativos. Este documento evalúa la implementación de FACTS en el Sistema Regional de Transmisión (STR) del Departamento del Atlántico, como estrategia para mejorar la capacidad de transferencia de potencia del sistema y la respuesta al incremento de la demanda proyectada para los próximos años.spa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectFlexible alternating current transmission systemsspa
dc.subjectPower systemspa
dc.subjectFlexibilityspa
dc.subjectConstraintsspa
dc.subjectPower systemspa
dc.subjectSistemas flexibles de transmision en corriente alternaspa
dc.subjectSistemas eléctricos de potenciaspa
dc.subjectFlexibilidadspa
dc.subjectRestriccionesspa
dc.titleMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)spa
dc.typemasterThesisspa
dcterms.referencesABB. (1997). Electrical Transmission and Distribution Reference Book.spa
dcterms.referencesABB. (1999). FACTS , poderosos sistemas para una transmisión flexible de la energía El rápido proceso de transformación en que se encuentra el mercado de la, 1–2.spa
dcterms.referencesAbdelaziz, A. Y., El-Sharkawy, M. A., & Attia, M. A. (2015). Optimal Location of Thyristor- Controlled Series Compensation and Static VAR Compensator to Enhance Steady-state Performance of Power System with Wind Penetration. Electric Power Components and Systems, 43(18), 1999–2009. https://doi.org/10.1080/15325008.2015.1075081spa
dcterms.referencesAc, F., & Systems, T. (2016). Parallel compensation. Energy Management Division, 24.spa
dcterms.referencesAdetokun, B. B., Muriithi, C. M., & Ojo, J. O. (2020). Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.105988spa
dcterms.referencesAl-Ismail, F. S., Hassan, M. A., & Abido, M. A. (2014). RTDS implementation of STATCOMbased power system stabilizers. Canadian Journal of Electrical and Computer Engineering, 37(1), 48–56. https://doi.org/10.1109/CJECE.2014.2309323spa
dcterms.referencesAli, M. A. S., Mehmood, K. K., & Kim, C.-H. (2017). Power system stability improvement through the coordination of TCPS-based damping controller and power system stabilizer. Advances in Electrical and Computer Engineering, 17(4), 27–36. https://doi.org/10.4316/AECE.2017.04004spa
dcterms.referencesAlomari, Majdi; Widyan, M. A.-N. M. G. A. (2017). HOPF Bifurcation Control of Subsynchronous Resonance Utilizing UPFC. Engineering Technology & Apllied Science Research.spa
dcterms.referencesAra, A. Lashkar; Kazemi, A.;Niaki, S. A. N. (2012). Multiobjective Optimal Location of FACTS Shunt-Series Controllers for Power System Operation Planning. IEEE Transactions on Power Delivery, 27 (2):, 481–490. https://doi.org/10.1109/TPWRD.2011.2176559spa
dcterms.referencesBabatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. In Energy Reports (Vol. 6, pp. 101–106). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2019.11.048spa
dcterms.referencesBanaei, M. R., & Kami, A. (2011). Interline power flow controller (IPFC) based damping recurrent neural network controllersfor enhancing stability. Energy Conversion and Management, 52(7), 2629–2636. https://doi.org/10.1016/j.enconman.2011.01.024spa
dcterms.referencesBarrios-martínez, E., & Ángeles-camacho, C. (2017). Technical comparison of FACTS controllers in parallel connection. Revista Mexicana de Trastornos Alimentarios, 15(1), 36– 44. https://doi.org/10.1016/j.jart.2017.01.001spa
dcterms.referencesBoroujeni, Hasan Fayazi; Hemmati, Reza; Boroujeni, S. M. S. (2012). Dynamic stability enhancement of a multimachine electric power system using STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 20, 1240–1248. https://doi.org/10.3906/elk-1105-4spa
dcterms.referencesBrucoli, M., Rossi, F., Torelli, F., & Trovato, M. (1985). A generalized approach to the analysis of voltage stability in electric power systems. Electric Power Systems Research, 9(1), 49– 62. https://doi.org/10.1016/0378-7796(85)90054-9spa
dcterms.referencesBruno, S., De Carne, G., & La Scala, M. (2016). Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Transactions on Power Systems, 31(4), 3202–3211. https://doi.org/10.1109/TPWRS.2015.2479089spa
dcterms.referencesCandelo, J. E., Caicedo, N. G., & Castro-Aranda, F. (2006). Proposal for the solution of voltage stability using coordination of facts devices. 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC’06, (September). https://doi.org/10.1109/TDCLA.2006.311366spa
dcterms.referencesChang, Y. C. (2013). Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement. Journal of Electrical Engineering and Technology, 8(1), 31–39. https://doi.org/10.5370/JEET.2013.8.1.031spa
dcterms.referencesChang, Ya Chin, & Chang, R. F. (2013). Maximization of transmission system loadability with optimal FACTS installation strategy. Journal of Electrical Engineering and Technology, 8(5), 991–1001. https://doi.org/10.5370/JEET.2013.8.5.991spa
dcterms.referencesChidambaram, I. A., & Paramasivam, B. (2013). Optimized load-frequency simulation in restructured power system with Redox Flow Batteries and Interline Power Flow Controller. International Journal of Electrical Power and Energy Systems, 50(1), 9–24. https://doi.org/10.1016/j.ijepes.2013.02.004spa
dcterms.referencesChoi, J., Mount, T. D., & Thomas, R. J. (2007). Transmission expansion planning using contingency criteria. IEEE Transactions on Power Systems, 22(4), 2249–2261. https://doi.org/10.1109/TPWRS.2007.908478spa
dcterms.referencesCoronado, I., Zúñiga, P., & Ramírez, J. M. (2001). FACTS : soluciones modernas para la industria eléctrica. Avance y Perspectiva, 20, 235–244.spa
dcterms.referencesDai LV; Tung DD; Dong TLT; Quyen LC. (2017). Improving Power System Stability with Gramian Matrix-Based Optimal Setting of a Single Series FACTS Device: Feasibility Study in Vietnamese Power System. Hindwawi, 1–4. https://doi.org/10.1155/2017/3014510spa
dcterms.referencesDarabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of largescale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106021spa
dcterms.referencesDevi, S., & Geethanjali, M. (2014). Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization. International Journal of Electrical Power and Energy Systems, 62, 646–653. https://doi.org/10.1016/j.ijepes.2014.05.021spa
dcterms.referencesDuarte, S. N., de Almeida, P. M., & Barbosa, P. G. (2019). A novel energizing strategy for a grid-connected modular multilevel converter operating as static synchronous compensator. International Journal of Electrical Power and Energy Systems, 109, 672–684. https://doi.org/10.1016/j.ijepes.2019.02.028spa
dcterms.referencesEbeed, M., Kamel, S., & Jurado, F. (2016). Electrical Power and Energy Systems Determination of IPFC operating constraints in power flow analysis. International Journal of Electrical Power and Energy Systems, 81, 299–307. https://doi.org/10.1016/j.ijepes.2016.02.044spa
dcterms.referencesElserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). A transformerless STATCOM based on a hybrid Boost Modular Multilevel Converter with reduced number of switches. Electric Power Systems Research, 146, 341–348. https://doi.org/10.1016/j.epsr.2017.02.014spa
dcterms.referencesEscobar-Alvarez, H. D. (2009). Efectos De Algunos Compensadores De Voltaje En Un Sistema Eléctrico De Potencia. Universidad Nacional de Colombia.spa
dcterms.referencesEslami, Mahdiyeh;Shareef, Hussain; Mohamed, Azah; Khajehzadeh, M. (2012). A Survey on Flexible AC Transmission Systems (FACTS). Przeglad Electrotechniczny, 88, 88.spa
dcterms.referencesFrancisco D. Pérez A. (2013). Sistemas de transmisión flexible en corriente alterna, 4, 25–28.spa
dcterms.referencesGandoman, F. H., Ahmadi, A., Sharaf, A. M., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. G. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews, 82, 502–514. https://doi.org/10.1016/j.rser.2017.09.062spa
dcterms.referencesGasperic, S., & Mihalic, R. (2019). Estimation of the efficiency of FACTS devices for voltagestability enhancement with PV area criteria. Renewable and Sustainable Energy Reviews, 105, 144–156. https://doi.org/10.1016/j.rser.2019.01.039spa
dcterms.referencesGers, J. M. (2013). Distribution System Analysis and Automation Distribution System Analysis and Automation. London, United Kingdom: The Institution of Engineering and Technology.spa
dcterms.referencesGhorbani, A., Mozafari, B., Soleymani, S., & Ranjbar, A. M. (2016). Impact of STATCOM and SSSC on synchronous generator LOE protection. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2575–2588. https://doi.org/10.3906/elk-1403-13spa
dcterms.referencesGlazunova, A. M., & Aksaeva, E. S. (2018). Estimation of Total Transfer Capability in Intersystem Tie Lines of Electric Power Systems. IFAC-PapersOnLine, 51(32), 331–336. https://doi.org/10.1016/j.ifacol.2018.11.405spa
dcterms.referencesGrünbaum, R. (2008). FACTS para mejorar la eficicacia y la calidad de los sistemas de transmisiòn de corriente alterna, 83, 525–530.spa
dcterms.referencesGuillardi, H., Verri, E., Antenor, J., & Pinhabel, F. (2018). HardwareX General-compensationpurpose Static var Compensator prototype Point of Common Coupling. HardwareX, 5, e00049. https://doi.org/10.1016/j.ohx.2018.e00049spa
dcterms.referencesGuo, Z., Bai, X., Chan, K. W., & Xia, S. (2015). Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Generation, Transmission & Distribution, 9(1), 61–74. https://doi.org/10.1049/iet-gtd.2014.0038spa
dcterms.referencesGupta, A. R., & Kumar, A. (2018). Impact of various load models on D-STATCOM allocation in DNO operated distribution network. In Procedia Computer Science (Vol. 125, pp. 862– 870). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.12.110spa
dcterms.referencesGutiérrez-Alcaraz, G., González-Cabrera, N., & Gil, E. (2020). An efficient method for Contingency-Constrained Transmission Expansion Planning. Electric Power Systems Research, 182, 106208. https://doi.org/10.1016/j.epsr.2020.106208spa
dcterms.referencesHafez, A. A. A. (2017). STATCOM versus SSSC for power system stabilization. IEEJ Transactions on Electrical and Electronic Engineering, 12(4), 474–483. https://doi.org/10.1002/tee.22402spa
dcterms.referencesHMV Mejia Villegas S.A. (2003). Subestaciones de Alta y Extra Alta Tensión (Segunda Ed). Medellìn: HMV Ingenierìa.spa
dcterms.referencesJamnani, J. G., & Pandya, M. (2019). Coordination of SVC and TCSC for Management of Power Flow by Particle Swarm Optimization. Energy Procedia, 156, 321–326. https://doi.org/10.1016/j.egypro.2018.11.149spa
dcterms.referencesJensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., … Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044spa
dcterms.referencesKarthikeyan, K., & Dhal, P. K. (2018). Optimal Location of STATCOM based Dynamic Stability Analysis tuning of PSS using Particle Swarm Optimization. In Materials Today: Proceedings (Vol. 5, pp. 588–595). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2017.11.122spa
dcterms.referencesKazerooni, A. K., & Mutale, J. (2010). Transmission network planning under security and environmental constraints. IEEE Transactions on Power Systems, 25(2), 1169–1178. https://doi.org/10.1109/TPWRS.2009.2036800spa
dcterms.referencesKirthika, N., & Balamurugan, S. (2016). A new dynamic control strategy for power transmission congestion management using series compensation. International Journal of Electrical Power and Energy Systems, 77, 271–279. https://doi.org/10.1016/j.ijepes.2015.11.031spa
dcterms.referencesKumar, R., Singh, R., & Ashfaq, H. (2020). Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106589spa
dcterms.referencesKundur, P., & Power, R. I. E. (1994). Power system stability and control (Primera Ed). New York: McGraw-Hill. https://doi.org/0-07-035958-Xspa
dcterms.referencesLi, J., Liu, F., Li, Z., Mei, S., & He, G. (2018). Impacts and benefits of UPFC to wind power integration in unit commitment. Renewable Energy, 116, 570–583. https://doi.org/10.1016/j.renene.2017.09.085spa
dcterms.referencesLiu, Y. H., Watson, N. R., Zhou, K. L., & Yang, B. F. (2013). Converter system nonlinear modeling and control for transmission applications-Part I: VSC system. IEEE Transactions on Power Delivery, 28(3), 1381–1390. https://doi.org/10.1109/TPWRD.2013.2240020spa
dcterms.referencesMa, T. T., & Shr, T. H. (2012). Advanced reactive power control schemes using static synchronous compensator and adaptive inverse model theory. International Review of Electrical Engineering, 7(6), 6266–6274.spa
dcterms.referencesMaldonado, J. (2014). Planificación de la expansión del sistema de transmisión eléctrico considerando equipos facts. Universidad de Chile. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/116482/cfmaldonado_jg.pdf?sequence=1&isAllowed=yspa
dcterms.referencesMelin, P. E., Guzman, J. I., Hernandez, F. A., Baier, C. R., Muñoz, J. A., Espinoza, J. R., & Espinosa, E. E. (2020). Analysis and control strategy for a current-source based DSTATCOM towards minimum losses. International Journal of Electrical Power and Energy Systems, 116. https://doi.org/10.1016/j.ijepes.2019.105532spa
dcterms.referencesMezaache, M., Chikhi, K., & Fetha, C. (2016). UPFC device: Optimal location and parameter setting to reduce losses in electric-power systems using a genetic-algorithm method. Transactions on Electrical and Electronic Materials, 17(1), 1–6. https://doi.org/10.4313/TEEM.2016.17.1.1spa
dcterms.referencesNoh, H., Cho, H., Lee, S., & Lee, B. (2020). STATCOM with SSR damping controller using geometric extraction on phase space reconstruction method. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106017spa
dcterms.referencesOghorada, O. J. K., & Zhang, L. (2018). Analysis of star and delta connected modular multilevel cascaded converter-based STATCOM for load unbalanced compensation. International Journal of Electrical Power and Energy Systems, 95, 341–352. https://doi.org/10.1016/j.ijepes.2017.08.034spa
dcterms.referencesPeng, F. Z. (2017). Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proceedings of the IEEE, 105(11), 2099–2115. https://doi.org/10.1109/JPROC.2017.2714022spa
dcterms.referencesQader, M. R. (2015). Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy, 89, 576–592. https://doi.org/10.1016/j.energy.2015.06.012spa
dcterms.referencesRamirez, J. M., Caicedo, G., & Correa, R. E. (2017). FACTS Sistemas de transmisión flexible. Cali, Colombia: Universidad del Valle Programa Editorial.spa
dcterms.referencesRao, V. S., & Rao, R. S. (2017). Optimal Placement of STATCOM using Two Stage Algorithm for Enhancing Power System Static Security. In Energy Procedia (Vol. 117, pp. 575–582). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.05.151spa
dcterms.referencesReyes-Archundia, E., Guardado, J. L., Moreno-Goytia, E. L., Gutierrez-Gnecchi, J. A., & Martinez-Cardenas, F. (2015). Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator. Advances in Electrical and Computer Engineering, 15(3), 17–22. https://doi.org/10.4316/AECE.2015.03003spa
dcterms.referencesSadiq, A. A., Adamu, S. S., & Buhari, M. (2019). Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS. Engineering Science and Technology, an International Journal, 22(1), 33–46. https://doi.org/10.1016/j.jestch.2018.09.013spa
dcterms.referencesSakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362spa
dcterms.referencesSedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058spa
dcterms.referencesShahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002spa
dcterms.referencesShchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013spa
dcterms.referencesSakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362spa
dcterms.referencesSedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058spa
dcterms.referencesShahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002spa
dcterms.referencesShchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013spa
dcterms.referencesShin, H. S., Cho, S. M., Kim, J. S., & Kim, J. C. (2013). Study of optimal location and compensation rate of thyristor- controlled series capacitor considering multi-objective function. Journal of Electrical Engineering and Technology, 8(3), 428–435. https://doi.org/10.5370/JEET.2013.8.3.428spa
dcterms.referencesSIEMENS. (2016). Sistemas de Compensación en Redes de Transmisión de Energía - FACTS. Energía En Movimiento, 8, 46–51. Retrieved from https://www.energy.siemens.com/co/pool/co/publicaciones/energia-en-movimiento/febrero- 2016/articulo-8 -facts.pdfspa
dcterms.referencesSimpson, R., Plumpton, A., Varley, M., Tonner, C., Taylor, P., & Dai, X. P. (2017). Press-pack IGBTs for HVDC and FACTS. Csee Journal Of Power And Energy Systems, 3(3), 302– 310. https://doi.org/10.17775/Cseejpes.2016.01740spa
dcterms.referencesSingh, Bhim, Chandra, A., Al-Haddad, K., Anuradha, & Kothari, D. P. (1998). Reactive power compensation and load balancing in electric power distribution systems. International Journal of Electrical Power and Energy Systems, 20(6), 375–381. https://doi.org/10.1016/s0142-0615(98)00008-8spa
dcterms.referencesSingh, Bindeshwar, Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy Reports, 3, 94–108. https://doi.org/10.1016/j.egyr.2017.07.001spa
dcterms.referencesSingh, Bindeshwar, & Singh, S. (2019). GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Reports, 5, 84–103. https://doi.org/10.1016/j.egyr.2018.09.005spa
dcterms.referencesSreedharan, S., Joseph, T., Joseph, S., Chandran, C. V., J, V., & Das P, V. (2020). Power system loading margin enhancement by optimal STATCOM integration – A case study. Computers and Electrical Engineering, 81. https://doi.org/10.1016/j.compeleceng.2019.106521spa
dcterms.referencesThomas, J. J., & Grijalva, S. (2015). Flexible security-constrained optimal power flow. IEEE Transactions on Power Systems, 30(3), 1195–1202. https://doi.org/10.1109/TPWRS.2014.2345753spa
dcterms.referencesVijay Kumar, B., & Srikanth, N. V. (2015). Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power and Energy Systems, 64, 429–438. https://doi.org/10.1016/j.ijepes.2014.07.015spa
dcterms.referencesWang, K., & Crow, M. L. (2013). Modern flexible AC transmission system (FACTS) devices. Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097378.2.174spa
dcterms.referencesWang, P., Wang, Y., Jiang, N., & Gu, W. (2020). A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors. International Journal of Electrical Power and Energy Systems, 121. https://doi.org/10.1016/j.ijepes.2020.106091spa
dcterms.referencesXu, X., Bishop, M., Edmonds, M. J. S., & Oikarinen, D. G. (2015). A New Control Strategy for Distributed Static Compensators Considering Transmission Reactive Flow Constraints. IEEE Transactions on Power Delivery, 30(4), 1991–1998. https://doi.org/10.1109/TPWRD.2015.2389621spa
dcterms.referencesYifan, Z., Wei, H., Le, Z., Yong, M., Lei, C., Zongxiang, L., & Ling, D. (2020). Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch. Energy, 190. https://doi.org/10.1016/j.energy.2019.116426spa
dcterms.referencesZheng, J., & Li, J. (2012). Reactive Optimization Control for the Wind Farm with Static Var Compensator ( SVC ). 2012 24th Chinese Control and Decision Conference (CCDC), 2792–2795. https://doi.org/10.1109/CCDC.2012.6244445spa
dc.contributor.tutorSilva Ortega, Jorge Iván
dc.contributor.tutorSousa Santos, Vladimir
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International