Show simple item record


dc.creatorda Silva Bittencourt, Leonardo
dc.creatorSchnorr, Carlos Eduardo
dc.creatorCopetti Santos, Daniela
dc.creatorRostirolla, Diana Carolina
dc.creatorMoresco, Karla
dc.creatorOzório, Pedro
dc.creatorRodrigues Mingori, Moara
dc.creatorHeinfarth, Luana
dc.creatorGelain, Daniel
dc.creatorMoreira, José Cláudio Fonseca
dc.date.accessioned2020-11-04T14:47:23Z
dc.date.available2020-11-04T14:47:23Z
dc.date.issued2019-12-04
dc.identifier.issn17564646
dc.identifier.urihttps://hdl.handle.net/11323/7200
dc.description.abstractPrevious studies have reported that acrolein, may exert harmful effects on the brain. However, information regarding the neuroprotective properties of guarana against acrolein is not available. Due to the lack of research, we initiated the current study to investigate the effects of guarana extracts on acrolein-induced toxicity in the liver and the central nervous system of Wistar Rats. Twelve groups of 60 days old Wistar rats treated with guarana extracts (150, 250, and 350 mg/kg/day) for 8 weeks, were challenged with acrolein (2.5 mg/kg/day). Several parameters associated with oxidative damage to the brain and hepatic function, as well as behavior were evaluated. All tested concentrations of guarana extracts exerted protective effects against acrolein induced damage. No hepatic and oxidative damages or behavioral changes were observed in guarana control groups. To the best of our knowledge, this is the first study of its kind and therefore a milestone in this field.spa
dc.description.abstractEstudios anteriores han informado que la acroleína puede ejercer efectos nocivos en el cerebro. Sin embargo, no se dispone de información sobre las propiedades neuroprotectoras del guaraná contra la acroleína. Debido a la falta de investigación, iniciamos el estudio actual para investigar los efectos de los extractos de guaraná sobre la toxicidad inducida por acroleína en el hígado y el sistema nervioso central de las ratas Wistar. Doce grupos de ratas Wistar de 60 días de edad tratadas con extractos de guaraná (150, 250 y 350 mg / kg / día) durante 8 semanas, fueron desafiados con acroleína (2.5 mg / kg / día). Se evaluaron varios parámetros asociados con el daño oxidativo del cerebro y la función hepática, así como el comportamiento. Todas las concentraciones probadas de extractos de guaraná ejercieron efectos protectores contra el daño inducido por acroleína. No se observaron daños hepáticos y oxidativos o cambios de comportamiento en los grupos de control de guaraná. Hasta donde sabemos, este es el primer estudio de este tipo y, por lo tanto, un hito en este campo.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceJournal of Functional Foodsspa
dc.subject2-Propenalspa
dc.subjectOxidative stressspa
dc.subjectGuaranaspa
dc.subjectPolyphenolsspa
dc.subjectCognitive impairmentspa
dc.subjectNeurogenerative diseasesspa
dc.subjectEstrés oxidativospa
dc.subjectGuaranáspa
dc.subjectPolifenolesspa
dc.subjectDeterioro cognitivospa
dc.subjectEnfermedades neurogenerativasspa
dc.titleChronic acrolein exposure in wistar rats: the effects of guarana extractsspa
dc.title.alternativeExposición crónica a acroleína en ratas wistar: los efectos de los extractos de guaranáspa
dc.typearticlespa
dcterms.referencesAkbar, M., Essa, M. M., Daradkeh, G., Abdelmegeed, M. A., Choi, Y., Mahmood, L., & Song, B. J. (2016). Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Research, 1637, 34–55. https://doi.org/ 10.1016/j.brainres.2016.02.016.spa
dcterms.referencesAhmed, S. M., Abdelrahman, S. A., & Salama, A. E. (2017). Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats. Ultrastructural Pathology, 41, 168–185. https://doi.org/10.1080/01913123.2017. 1281367.spa
dcterms.referencesAlves, A. O., Weis, G. C. C., Unfer, T. C., Assmann, C. E., Barbisan, F., Azzolin, V. F., ... Boligon, A. (2019). Caffeinated beverages contribute to a more efficient inflammatory response: Evidence from human and earthworm immune cells. Food and Chemical Toxicology, 134. https://doi.org/10.1016/j.fct.2019.110809.spa
dcterms.referencesAlgarve, T. D., Assmann, C. E., Cadoná, F. C., Machado, A. K., Manica-Cattani, M. F., SatoMiyata, Y., ... da Cruz, I. B. M. (2019). Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: An in vivo fruit fly and in vitro neural cells study. Environmental science and Pollution Research International, 26(15), 15069–15083. https://doi.org/10.1007/s11356-019-04881-0.spa
dcterms.referencesAlzheimer’s Association Alzheimer’s Disease Facts and Figures 2015. Alzheimer’s Association Publication (2015). http://www.alz.org/facts/downloads/facts_figures_ 2015.pdf/ Accessed May 20 2016.spa
dcterms.referencesAnsari, M. A., Joshi, G., Huang, Q., Opii, W. O., Abdul, H. M., Sultana, R., & Butterfield, D. A. (2006). In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radical Biology and Medicine, 41, 1694–1703.spa
dcterms.referencesAnsari, M. A., Keller, J. N., & Scheff, S. W. (2008). Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity. Free Radical Biology and Medicine, 45, 1510–1519. https://doi.org/10.1016/j. freeradbiomed.2008.08.025.spa
dcterms.referencesBasile, A., Ferrara, L., Pezzo, M. D., Mele, G., Sorbo, S., Bassi, P., & Montesano, D. (2005). Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. Journal of Ethnopharmacology, 102, 32–36.spa
dcterms.referencesBeretta, G., Furlanetto, S., Regazzoni, L., Zarrella, M., & Facino, R. M. (2008). Quenching of alpha-beta unsaturated aldehydes by green tea polyphenols: HPLC-ESI-MS/MS studies. Journal of Pharmaceutical and Biomedical Analysis, 48, 606–611. https://doi. org/10.1016/j.jpba.2008.05.036.spa
dcterms.referencesBittencourt, L. S., Machado, D. C., Machado, M. M., Dos Santos, G. F., Algarve, T. D., Marinowic, D. R., ... Cruz, I. B. (2013). The protective effects of guarana extract (Paullinia cupana) on fibroblast NIH-3 T3 cells exposed to sodium nitroprusside. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 53, 119–125. https://doi.org/10.1016/j.fct.2012.11. 041.spa
dcterms.referencesBittencourt, L. S., Zeidán-Chuliá, F., Yatsu, F. K., Schnorr, C. E., Moresco, K. S., Kolling, E. A., ... Moreira, J. C. (2014). Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acroleininduced cytotoxicity on human neuronal-like cells. Phytotherapy Research: PTR, 28, 1615–1624. https://doi.org/10.1002/ptr.5173.spa
dcterms.referencesBuccafusco, J. J. (2009). Methods of behavior analysis in neuroscience (2nd ed). Boca Raton: CRC Press.spa
dcterms.referencesBurcham, P. C., Kaminskas, L. M., Tan, D., & Pyke, S. M. (2008). Carbonyl-scavenging drugs & protection against carbonyl stress-associated cell injury. Mini-Reviews in Medicinal Chemistry, 8, 319–330. Chen, W. Y., Wang, M., Zhang, J., Barve, S. S., McClain, C. J., & Joshi-Barve, S. (2017). Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stressmediated epithelial cell death leading to intestinal barrier dysfunction and permeability. American Journal of Pathology, 187(12), 2686–2697.spa
dcterms.referencesDuchan, E., Patel, N. D., & Feucht, C. (2010). Energy drinks: A review of use and safety for athletes. The Physician and Sports Medicine, 38, 171–179. https://doi.org/10.3810/ psm.2010.06.1796.spa
dcterms.referencesEwert, A., Granvogl, M., & Schieberle, P. (2014). Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. Journal of Agricultural and Food Chemistry, 20(62), 8524–8529. https://doi.org/10.1021/jf501527u.spa
dcterms.referencesFaroon, O., Roney, N., Taylor, J., & Ashizawa, A. (2008a). Acrolein health effects. Toxicology and Industriaspa
dcterms.referencesFaroon, O., Roney, N., Taylor, J., & Ashizawa, A. (2008b). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health, 24, 543–564. https://doi.org/10.1177/0748233708098124.spa
dcterms.referencesFukumasu, H., Avanzo, J. L., Heidor, R., Silva, T. C., Atroch, A., Moreno, F. S., & Dagli, M. L. (2006). Protective effects of guarana (Paullinia cupana Mart. var. Sorbilis) against DEN-induced DNA damage on mouse liver. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 44, 862–867.spa
dcterms.referencesFraga, C. G., Croft, K. D., Kennedye, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food and Function, 10, 514. https://doi.org/10.1039/c8fo01997e.spa
dcterms.referencesHuang, Y. J., Jin, M. H., Pi, R. B., Zhang, J. J., Ouyang, Y., Chao, X. J., ... Qin, J. (2013). Acrolein induces Alzheimer's disease-like pathologies in vitro and in vivo. Toxicology Letters, 217, 184–191. https://doi.org/10.1016/j.toxlet.2012.12.023.spa
dcterms.referencesKleber Silveira, A., Moresco, K. S., Mautone Gomes, H., da Silva Morrone, M., Kich Grun, L., Pens Gelain, D., ... Fonseca Moreira, J. C. (2018). Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats. Phytotherapy Research, 32(12), 2466–2474. https://doi.org/10.1002/ptr. 6185.spa
dcterms.referencesLo, C. Y., Li, S. M., Tan, D., & Pan, M. H. (2006). Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Molecular Nutrition and Food Research, 50, 1118–1128.spa
dcterms.referencesMaksymchuk, O., Shysh, A., Rosohatska, I., & Chashchyn, M. (2017). Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacology Reports, 69, 1386–1392. https://doi.org/10.1016/j.pharep.2017.05.020.spa
dcterms.referencesMizoi, M., Yoshida, M., Saiki, R., Waragai, M., Uemura, K., Akatsu, H., ... Igarashi, K. (2014). Distinction between mild cognitive impairment and Alzheimer's disease by CSF amyloid β40 and β42, and protein-conjugated acrolein. Clinica Chimica Acta; International Journal of Clinical Chemistry, 430, 150–155. https://doi.org/10.1016/j. cca.2014.01.007.spa
dcterms.referencesNaoi, M., Maruyama, W., Shamoto-Nagai, M., Yi, H., Akao, Y., & Tanaka, M. (2005). Oxidative stress in mitochondria: Decision to survival and death of neurons in neurodegenerative disorders. Molecular Neurobiology, 31, 81–93.spa
dcterms.referencesO’Brien, P. J., Siraki, A. G., & Shangari, N. (2005). Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Critical Reviews in Toxicology, 35, 609–662.spa
dcterms.referencesPadurariu, M., Ciobica, A., Lefter, R., Serban, I. L., Stefanescu, C., & Chirita, R. (2013). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 25, 134–147.spa
dcterms.referencesPan, X. Q., Kaneko, H., Ushio, H., & Ohshima, T. (2005). Oxidation of all-cis7,10,13,16,19-docosapentaenoic acid ethyl ester. Hydroperoxide distribution and volatile characterization. European Journal of Lipid Science and Technology, 107, 228–238. https://doi.org/10.1002/ejlt.200501135.spa
dcterms.referencesPan, Y., Long, X., Yi, R., & Zhao, X. (2018). Polyphenols in Liubao tea can prevent CCl₄- induced hepatic damage in mice through its antioxidant capacities. Nutrients, 10, 10–19. https://doi.org/10.3390/nu10091280.spa
dcterms.referencesPark, Y. S., Misonou, Y., Fujiwara, N., Takahashi, M., Miyamoto, Y., Koh, Y. H., ... Taniguchi, N. (2005). Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 327, 1058–1065.spa
dcterms.referencesPocernich, C. B., & Butterfield, D. A. (2012). Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochimica et Biophysica Acta, 1822, 625–630. https:// doi.org/10.1016/j.bbadis.2011.10.003.spa
dcterms.referencesPochernich, C. B., Lange, M. L. B., Sultana, R., & Butterfiled, D. A. (2011). Nutritional approaches to modulate Oxidative Stress in Alzheimer’s Disease. Current Alzheimer Research, 8, 452–469.spa
dcterms.referencesPortella, R. L., Barcelos, R. P., da Rosa, E. J., Ribeiro, E. E., Cruz, I. B., Suleiman, L., & Soares, F. A. (2013). Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: An in vitro and in vivo study. Lipids in Health and Disease, 12, 1–18. https://doi.org/10.1186/1476-511X-12-12.spa
dcterms.referencesShao, X., Bai, N., He, K., & Ho, C. T. (2008). Apple polyphenols, phloretin and phloridzin: New trapping agents of reactive dicarbonyl species. Chemical Research in Toxicology, 21, 2042–2050. https://doi.org/10.1021/tx800227v.spa
dcterms.referencesSingh, M., Murthy, V., & Ramassamy, C. (2010). Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: Potential implication in Alzheimer’s disease. Journal of Alzheimer's disease, 21, 229–247. https://doi.org/10.3233/JAD-2010- 091729spa
dcterms.referencesSmith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochimica et Biophysica Acta, 1768, 1976–1990.spa
dcterms.referencesStevens, J. F., & Maier, C. S. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition and Food Research, 52, 7–25. https://doi.org/10.1002/mnfr.200700412.spa
dcterms.referencesSubbiah, M. T., & Yunker, R. (2008). Studies on the nature of anti-platelet aggregatory factors in the seeds of the Amazonian Herb Guarana (Paullinia cupana). International Journal for Vitamin and Nutrition Research, 78, 96–101. https://doi.org/10.1024/ 0300-9831.78.2.96.spa
dcterms.referencesSultana, R., Perluigi, M., & Butterfield, D. A. (2013). Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radical Biology and Medicine, 62, 157–169. https://doi.org/10.1016/j.freeradbiomed.2012. 09.027.spa
dcterms.referencesThomsen, M., Clarke, S., & Vitetta, L. (2018). Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integrative Cancer Therapies, 9(6), 899–916. https://doi.org/10.3920/BM2017.0172.spa
dcterms.referencesUchida, K. (1999). Current status of acrolein as a lipid peroxidation product. Trends in Cardiovascular Medicine, 9, 109–113.spa
dcterms.referencesU.S. National Institute of Health (2011). Guide for the Care and Use of Laboratory Animals. (8th Ed.) Washington DC: National Academies Press (US).spa
dcterms.referencesWang, G. W., Guo, Y., Vondriska, T. M., Zhang, J., Zhang, S., Tsai, L. L., ... Prabhu, S. D. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 1016–1022.spa
dcterms.referencesYamaguti-Sasaki, E., Ito, L. A., Canteli, V. C., Ushirobira, T. M., Ueda-Nakamura, T., Dias Filho, B. P., ... de Mello, J. C. (2007). Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules, 12, 1950–1963.spa
dcterms.referencesYoshida, M., Higashi, K., Kuni, K., Mizoi, M., Saiki, R., Nakamura, M., ... Igarashi, K. (2015). Distinguishing mild cognitive impairment from Alzheimer's disease with acrolein metabolites and creatinine in urine. Clinica Chimica Acta; International Journal of Clinical Chemistry, 441, 115–121. https://doi.org/10.1016/j.cca.2014.12. 023.spa
dcterms.referencesZeidán-Chuliá, F., Gelain, D. P., Kolling, E. A., Rybarczyk-Filho, J. L., Ambrosi, P., Terra, S. R., ... Moreira, J. C. (2013). Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxidative Medicine and Cellular Longevity, 2013, 1–27. https://doi.org/10.1155/2013/791795.spa
dcterms.referencesZhang, X. W., Li, W. F., Li, W. W., & Ren, K. H. (2011). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharmaceutical Biology, 49, 256–261. https:// doi.org/10.3109/13880209.2010.501803.spa
dcterms.referencesZhu, Q., Sun, Z., Jiang, Y., Chen, F., & Wang, M. (2011). Acrolein scavengers: Reactivity, mechanism and impact on health. Molecular Nutrition and Food Research, 55, 1375–1390. https://doi.org/10.1002/mnfr.201100149.spa
dcterms.referencesZong, S., Li, J., Yang, L., Huang, Q., Ye, Z., Hou, G., & Ye, M. (2018). Synergistic antitumor effect of polysaccharide from Lachnum sp. in combination with cyclophosphamide in hepatocellular carcinoma. Urology, 38, 413–416. https://doi.org/10. 1016/j.carbpol.2018.05.006.spa
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersionspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1756464619306577?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.jff.2019.103733


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal