Show simple item record

dc.creatorKinyoki, Damaris K.
dc.creatorRoss, Jennifer M.
dc.creatorLazzar-Atwood, Alice
dc.creatorMunro, Sandra B.
dc.creatorSchaeffer, Lauren E.
dc.creatorAbbasalizad-Farhangi, Mahdieh
dc.creatorAbbasi, Masoumeh
dc.creatorAbbastabar, Hedayat
dc.creatorAbdelalim, Ahmed
dc.creatorAbdoli, Amir
dc.creatorAlvis-Guzman, Nelson
dc.creatorLBD Double Burden of Malnutrition Collaborators
dc.description.abstractA double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceNature Medicinespa
dc.subjectRisk factorsspa
dc.subjectSigns and symptomsspa
dc.titleMapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017spa
dcterms.references1. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384, 766–781 (2014).spa
dcterms.references2. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).spa
dcterms.references3. Black, R. E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).spa
dcterms.references4. World Health Organization. Double burden of malnutrition (2018).spa
dcterms.references5. de Onis, M., Blössner, M. & Borghi, E. Global prevalence and trends of overweight and obesity among preschool children. Am. J. Clin. Nutr. 92, 1257–1264 (2010).spa
dcterms.references6.Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 395, 65–74 (2020).spa
dcterms.references7. UNICEF, WHO & The World Bank. Joint child malnutrition estimates - levels and trends (2017 edition) (2017)spa
dcterms.references8. Hawkes, C., Demaio, A. R. & Branca, F. Double-duty actions for ending malnutrition within a decade. Lancet Glob. Health 5, e745–e746 (2017).spa
dcterms.references9. Cole, T. J., Bellizzi, M. C., Flegal, K. M. & Dietz, W. H. Establishing a standard definition for child overweight and obesity worldwide: international survey. Brit. Med. J. 320, 1240 (2000).spa
dcterms.references10. World Health Organization. Training course on child growth assessment (2008).spa
dcterms.references11. de Onis, M. et al. Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutr. 22, 175–179 (2019).spa
dcterms.references12. United Nations. Goal 2: sustainable development knowledge platform
dcterms.references13. World Health Organization. Global nutrition targets 2025: childhood overweight policy brief (2014).spa
dcterms.references14. World Health Organization. Global nutrition targets 2025: wasting policy brief (2014).spa
dcterms.references15. Development Initatives. 2018 Global nutrition report: shining a light to spur action on nutrition (2018).spa
dcterms.references16. United Nations Children’s Fund, World Health Organization & The World Bank. Levels and trends in child malnutrition: key findings of the 2018 edition (2018).spa
dcterms.references17. World Health Organization. Data: nutrition - joint child malnutrition estimates (2018 edition) (2018)spa
dcterms.references18. Tzioumis, E., Kay, M. C., Bentley, M. E. & Adair, L. S. Prevalence and trends in the childhood dual burden of malnutrition in low- and middle-income countries, 1990–2012. Public Health Nutr. 19, 1375–1388 (2016).spa
dcterms.references19. Abarca-Gómez, L. et al. Worldwide trends in body-mass index, underweight, overweight and obesity from 1975 to 2016: a pooled analysis of 2,416 population-based measurement studies in 128.9 million children, adolescents and adults. Lancet 390, 2627–2642 (2017).spa
dcterms.references20. Humbwavali, J. B., Giugliani, C., Silva, I. C. Mda & Duncan, B. B. Temporal trends in the nutritional status of women and children under five years of age in sub-Saharan African countries: ecological study. Sao Paulo Med. J. Rev. Paul. Med. 136, 454–463 (2018).spa
dcterms.references21. Kinyoki, D. K. et al. Mapping child growth failure across low- and middle-income countries. Nature 577, 231–234 (2020).spa
dcterms.references22. Diggle, P. & Ribeiro, P. J. Model-based Geostatistics (Springer, 2007);
dcterms.references23. FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding Against Economic Slowdowns and Downturns (FAO, 2019).spa
dcterms.references24. Wells, J. C. et al. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 395, 75–88 (2020).spa
dcterms.references25. Bixby, H. et al. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).spa
dcterms.references26. Food and Agriculture Organization of the United Nations. The double burden of malnutrition. Case studies from six developing countries. FAO Food Nutr. Pap. 84, 1–334 (2006).spa
dcterms.references27. Monteiro, C. A., Levy, R. B., Claro, R. M., de Castro, I. R. R. & Cannon, G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 14, 5–13 (2010).spa
dcterms.references28. Wang, Y. & Chen, H.-J. in Handbook of Anthropometry (ed. Preedy, V. R.) 29–48 (Springer, 2012).spa
dcterms.references29. WHO. Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee;jsessionid=2FE8F4F177D025F6433656F4F7577F3F?sequence=1 (1995).spa
dcterms.references30. Neufeld, L. M. & Osemdar, S. J. M. World nutrition situation: global, regional and country trends in underweight and stunting as indicators of nutrition and health of populations. Internat. Nutr. 78, 11–19 (2013).spa
dcterms.references31. CDC. Causes and consequences of childhood obesity (2016).spa
dcterms.references32. Ong, K. K. L., Ahmed, M. L., Emmett, P. M., Preece, M. A. & Dunger, D. B. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Brit. Med. J. 320, 967 (2000).spa
dcterms.references33. Global Panel on Agriculture and Food Systems for Nutrition. The cost of malnutrition: why policy action is urgent (2016).spa
dcterms.references34. Scaling Up Nutrition Civil Society Network. SUN Movement Strategy & Roadmap 2016–2020. (2016).spa
dcterms.references35. Scaling Up Nutrition (SUN) Movement: Annual Progress Report 2016. (2016).spa
dcterms.references36. Hawkes, C. et al. Double-duty actions: seizing programme and policy opportunities to address malnutrition in all its forms. Lancet 395, 142–155 (2020).spa
dcterms.references37. World Health Organization. United Nations decade of action on nutrition 2016–2025: towards country-specific SMART commitments for action on nutrition (2016).spa
dcterms.references38. Nugent, R. et al. Economic effects of the double burden of malnutrition. Lancet 395, 156–165 (2020).spa
dcterms.references39. Global Administrative Areas. GADM database of global administrative areas (2018).spa
dcterms.references40. Land Processes Distributed Active Archive Center. Combined MODIS 5.1. MCD12Q1 | LP DAAC: NASA Land Data Products and Services. (2017).spa
dcterms.references41. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).spa
dcterms.references42. World Wildlife Fund. Global lakes and wetlands database, level 3 (2004).spa
dcterms.references43. Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).spa
dcterms.references44. WorldPop. WorldPop dataset (2017).spa
dcterms.references45. GeoNetwork. The Global Administrative Unit Layers (GAUL) (2015).spa
dcterms.references46. Murray, C. J. et al. GBD 2010: design, definitions and metrics. Lancet 380, 2063–2066 (2012).spa
dcterms.references47. Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392, 1684–1735 (2018).spa
dcterms.references48. Stevens, G. A. et al. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. PLoS Med. 13, e1002056 (2016).spa
dcterms.references49. USAID. Demographic and health surveys (DHS)
dcterms.references50. UNICEF. Multiple indicator cluster surveys (MICS)
dcterms.references51. World Bank Group. Living standards measurement survey (LSMS)
dcterms.references52. World Bank Group. Core welfare indicators questionnaire survey (CWIQ)
dcterms.references53. Lumley, T. in Complex Surveys: A Guide to Analysis Using R. (Wiley, 2010).spa
dcterms.references54. Lumley, T. Analysis of complex survey samples. J. Stat. Softw. 9, 1–19 (2004).spa
dcterms.references55. FAO. The global administrative unit layers (GAUL): technical aspects
dcterms.references56. Global Administrative Areas (GADM). GADM database of global administrative areas
dcterms.references57. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. Suppl, 450, 76–85 (2006).spa
dcterms.references58. Indrayan, A. Demystifying LMS and BCPE methods of centile estimation for growth and other health parameters. Indian Pediatr. 51, 37–43 (2014).spa
dcterms.references59. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr 95, 76–85 (2006).spa
dcterms.references60. Bhatt, S. et al. Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. J. R. Soc. Interface 14, 20170520 (2017).spa
dcterms.references61. Fienberg, S. E. The Analysis of Cross-Classified Categorical Data (Springer, 2007);
dcterms.references62. Ananth, C. V. & Kleinbaum, D. G. Regression models for ordinal responses: a review of methods and applications. Int. J. Epidemiol. 26, 1323–1333 (1997).spa
dcterms.references63. Mosser, J. F. et al. Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: a spatial and temporal modelling study. Lancet 393, 1843–1855 (2019).spa
dcterms.references64. Stein, M. L. Interpolation of Spatial Data (Springer, 1999).spa
dcterms.references65. Diggle, Peter J. & Ribeiro, Paulo J. Model-based Geostatistics (Springer, 2007);
dcterms.references66. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).spa
dcterms.references67. Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68–83 (2013).spa
dcterms.references68. Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol.73, 423–498 (2011).spa
dcterms.references69. Golding, N. et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the sustainable development goals. Lancet 390, 2171–2182 (2017).spa
dcterms.references70. Osgood-Zimmerman, A. et al. Mapping child growth failure in Africa between 2000 and 2015. Nature 555, 41–47 (2018).spa
dcterms.references71. Alegana, V. A. et al. Fine resolution mapping of population age-structures for health and development applications. J. R. Soc. Interface 12, 20150073–20150073 (2015).spa
dcterms.references72. Patil, A. P., Gething, P. W., Piel, F. B. & Hay, S. I. Bayesian geostatistics in health cartography: the perspective of malaria. Trends Parasitol. 27, 246–253 (2011).spa
dcterms.references73. Gething, P. W., Patil, A. P. & Hay, S. I. Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation. PLoS Comput. Biol. 6, e1000724 (2010).spa
dcterms.references74. Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).spa
dcterms.references75. Blangiardo, M. & Cameletti, M. in Spatial and Spatio‐temporal Bayesian Models with R‐INLA 235–258 (John Wiley & Sons, 2015).spa
dcterms.references76. Cameletti, M., Lindgren, F., Simpson, D. & Rue, H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv. Stat. Anal. 97, 109–131 (2013).spa
dcterms.references77. Blangiardo, M., Cameletti, M., Baio, G. & Rue, Havard Spatial and spatio-temporal models with R-INLA. Spat. Spatio-Temporal Epidemiol. 7, 39–55 (2013).spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal