Mostrar el registro sencillo del ítem

dc.contributor.authorCabero, Ismaelspa
dc.contributor.authorSantágueda-Villanueva, Maríaspa
dc.contributor.authorVillalobos-Antúnez, Jose Vicentespa
dc.contributor.authorRoig, Ana Isabelspa
dc.date.accessioned2020-11-09T19:28:28Z
dc.date.available2020-11-09T19:28:28Z
dc.date.issued2020-09-29
dc.identifier.issn2227-7102spa
dc.identifier.urihttps://hdl.handle.net/11323/7226spa
dc.description.abstractFrom an early age, understanding proportional reasoning is a fundamental pillar in mathematics education, and therefore, teachers should have a thorough knowledge of it. Despite its significance, there are few studies that analyse the difficulties that student teachers have in understanding proportionality, and even less so inverse proportionality. We emphasised inverse missing-value problems by analysing them according to the type of unknown and the representation used. We checked which strategies they use to solve them and related them to other generic problems of proportional reasoning. For such purposes, we used a combined quantitative and qualitative empirical study applied to how pre-service teachers solve fifteen problems. The results show that the representations used in the statements aid their understanding and help solve the problems. Similarly, it is shown here that certain problem-solving strategies complicate proportional reasoning in pre-service teachers.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceEducation Sciencesspa
dc.subjectInverse proportionalityspa
dc.subjectProblem-solving strategiesspa
dc.subjectIntensive quantityspa
dc.subjectExtensive quantityspa
dc.subjectProportional reasoningspa
dc.subjectTabular and graphic representationspa
dc.subjectPre-service teachersspa
dc.titleUnderstanding of inverse proportional reasoning in pre-service teachersspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/2227-7102/10/11/308/xmlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/educsci10110308spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Lesh, R.; Post, T.R.; Behr, M. Proportional reasoning. In Number Concepts and Operations in the Middle Grades; National Council of Teachers of Mathematics, Lawrence Erlbaum Associates: Reston, VA, USA, 1988; pp. 93–118.spa
dc.relation.references2. Ben-Chaim, D.; Keret, Y.; Ilany, B.S. Ratio and Proportion; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.spa
dc.relation.references3. National Council of Teachers of Mathematics; Commission on Standards for School Mathematics. Curriculum and Evaluation Standards for School Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 1989.spa
dc.relation.references4. Riley, K. Teachers understanding of proportional reasoning. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 6, pp. 1055–1061.spa
dc.relation.references5. Arican, M. Preservice middle and high school mathematics teachers’ strategies when solving proportion problems. Int. J. Sci. Math. Educ. 2018, 16, 315–335. [CrossRef]spa
dc.relation.references6. Lamon, S.J. Rational numbers and proportional reasoning: Toward a theoretical framework for research. Second. Handb. Res. Math. Teach. Learn. 2007, 1, 629–667.spa
dc.relation.references7. Izsák, A.; Jacobson, E. Understanding Teachers’ Inferences of Proportionality Between Quantities that Form a Constant Difference or Constant Product; National Council of Teachers of Mathematics Research Presession: Denver, CO, USA, 2013.spa
dc.relation.references8. Akar, G. Different levels of reasoning in within state ratio conception and the conceptualization of rate: A possible example. In Proceedings of the 32nd Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, , Columbus, OH, USA, 28–31 October 2010, Volume 4, pp. 711–719.spa
dc.relation.references9. Simon, M.A.; Blume, G.W. Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. J. Math. Behav. 1994, 13, 183–197. [CrossRef]spa
dc.relation.references10. Harel, G.; Behr, M. Teachers’ Solutions for Multiplicative Problems. Hiroshima J. Math. Educ. 1995, 3, 31–51.spa
dc.relation.references11. Orrill, C.H.; Izsák, A.; Cohen, A.; Templin, J.; Lobato, J. Preliminary Observations of Teachers’ Multiplicative Reasoning: Insights from Does It Work and Diagnosing Teachers’ Multiplicative Reasoning Projects; Kaput Center for Research and Innovation in STEM Education, University of Massachusetts: Dartmouth, MA, USA, 2010.spa
dc.relation.references12. Post, T.R.; Harel, G.; Behr, M.; Lesh, R. Intermediate Teachers’ Knowledge of Rational Number Concepts. In Integrating Research on Teaching and Learning Mathematics; State University of NY Press: New York, NY, USA, 1991; pp. 177–198.spa
dc.relation.references13. Cramer, K.A.; Post, T.; Currier, S. Learning and teaching ratio and proportion: Research implications: Middle grades mathematics. In Research Ideas for the Classroom: Middle Grades Mathematics; Macmillan Publishing Company: New York, NY, USA, 1993; pp. 159–178.spa
dc.relation.references14. Lim, K.H. Burning the candle at just one end. Math. Teach. Middle Sch. 2009, 14, 492–500.spa
dc.relation.references15. Arican, M. Exploring Preservice Middle and High School Mathematics Teachers’ Understanding of Directly and Inversely Proportional Relationships. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2015.spa
dc.relation.references16. Fisher, L.C. Strategies used by secondary mathematics teachers to solve proportion problems. J. Res. Math. Educ. 1988, 19 , 157–168. [CrossRef]spa
dc.relation.references17. Lobato, J.; Ellis, A.; Zbiek, R.M. Developing Essential Understanding of Ratios, Proportions, and Proportional Reasoning for Teaching Mathematics: Grades 6–8; ERIC: Washington, DC, USA, 2010.spa
dc.relation.references18. Sowder, J.; Armstrong, B.; Lamon, S.; Simon, M.; Sowder, L.; Thompson, A. Educating teachers to teach multiplicative structures in the middle grades. J. Math. Teach. Educ. 1998, 1, 127–155. [CrossRef]spa
dc.relation.references19. Stemn, B.S. Building middle school students’ understanding of proportional reasoning through mathematical investigation. Education 3–13 2008, 36, 383–392. [CrossRef]spa
dc.relation.references20. Becerra, M.V.; Pancorbo, L.; Martínez, R.; Rodríguez, R. Matemáticas 2◦ ESO; McGraw-Hill: Madrid , Spain 1997.spa
dc.relation.references21. Sallán, J.M.G.; Vizcarra, R.E. Proporcionalidad aritmética: Buscando alternativas a la enseñanza tradicional. Suma Rev. Sobre Ense NAnza Aprendiz. Las MatemÁTicas 2009, 62, 35–48.spa
dc.relation.references22. Initiative, C.C.S.S. Common Core State Standards for Mathematics. 2010. Available online: http://www. corestandards.org/assets/CCSSI_Math%20Standards.pdf (accessed on 25 July 2020).spa
dc.relation.references23. Beckmann, S. Mathematics for Elementary Teachers, 3rd ed.; Pearson Addison-Wesley: Boston, MA, USA, 2011.spa
dc.relation.references24. NCTM. Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics; NCTM: Reston, VA, USA, 2006.spa
dc.relation.references25. Lamon, S.J. Teaching Fractions and Ratios for Understanding: Essential Content Knowledge and Instructional Strategies for Teachers; Routledge: London, UK, 2020.spa
dc.relation.references26. Vergnaud, G. Multiplicative Structures; Lesh, R., Landau, M., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 127–174.spa
dc.relation.references27. Vergnaud, G. Multiplicative Structures; Hiebert, J., Behr, M., Eds.; National Council of Teachers of Mathematics: Reston, VA, USA, 1988; pp. 141–161.spa
dc.relation.references28. Beckmann, S.; Izsák, A. Two perspectives on proportional relationships: Extending complementary origins of multiplication in terms of quantities. J. Res. Math. Educ. 2015, 46, 17–38. [CrossRef]spa
dc.relation.references29. Arican, M. Preservice mathematics teachers’ understanding of and abilities to differentiate proportional relationships from nonproportional relationships. Int. J. Sci. Math. Educ. 2019, 17, 1423–1443. [CrossRef]spa
dc.relation.references30. Cabero, I.; Epifanio, I. Finding Archetypal Patterns for Binary Questionnaires; SORT: Barcelona, Spain 2020.spa
dc.relation.references31. Sinn, R.; Spence, D.; Poitevint, M. Rates Teaching Research Project; San Diego, CA, USA. 2010. Available online: http://faculty.ung.edu/djspence/Presentations/PBRateProblems/PatternBlockRatesWorksheet.pdf (accessed on 29 October 2020).spa
dc.relation.references32. Canada, D.; Gilbert, M.; Adolphson, K. Conceptions and misconceptions of elementary preservice teachers in proportional reasoning. In Proceedings of the 32th conference of the International Group for the Psychology of Mathematics Education, Columbus, OH, USA, 28–31 October 2010; Figueras, O., Cortina, J., Alatorre, S., Sepulveda, T.R.A., Eds.; Volume 2, pp. 249–256.spa
dc.relation.references33. Cox, D.C. Similarity in middle school mathematics: At the crossroads of geometry and number. Math. Think. Learn. 2013, 15, 3–23. [CrossRef]spa
dc.relation.references34. Tourniaire, F.; Pulos, S. Proportional reasoning: A review of the literature. Educ. Stud. Math. 1985, 16, 181–204. [CrossRef]spa
dc.relation.references35. Karplus, R. Proportional reasoning of early adolescents. In Acquisition of Mathematics Concepts and Processes; Academic Press: London, UK, 1983; pp. 45–90.spa
dc.relation.references36. Lamon, S.J. Ratio and proportion: Connecting content and children’s thinking. J. Res. Math. Educ. 1993, 24, 41–61. [CrossRef]spa
dc.relation.references37. Schwartz, J.L. Intensive quantity and referent transforming arithmetic operations. Res. Agenda Math. Educ. Number Concepts Oper. Middle Grades 1988, 2, 41–52.spa
dc.relation.references38. Kaput, J.; West, M.M. Missing-Value Proportional Problems: Factors Affecting Informal Reasoning Patterns. In The Development of Multiplicative Reasoning in the Learning of Mathematics; SUNY Press: Albany, NY, USA, 1994; pp. 235–287spa
dc.relation.references39. Thompson, P. A Theoretical Model of Quantity-Based Reasoning in Arithmetic and Algebra; Center for Research in Mathematics & Science Education, San Diego State University: San Diego, CA, USA, 1990.spa
dc.relation.references40. Weiland, T.; Orrill, C.H.; Nagar, G.G.; Brown, R.E.; Burke, J. Framing a robust understanding of proportional reasoning for teachers. J. Math. Teach. Educ. 2020, 1–24. [CrossRef]spa
dc.relation.references41. Lamon, S. Second handbook of research on mathematics teaching and learning. Inf. Age Publ. Ration. Proportional Reason. Towar. Theor. Framew. Res. 2007, 1, 629–668.spa
dc.relation.references42. Burgos, M.; Beltrán-Pellicer, P.; Giacomone, B.; Godino, J.D. Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesqui. 2018, 44. [CrossRef]spa
dc.relation.references43. Martínez Juste, S.; Muñoz Escolano, J.M.; Oller Marcén, A.M.; Ortega del Rincón, T. Análisis de problemas de proporcionalidad compuesta en libros de texto de 2o de ESO. Rev. Latinoam. Investig. MatemÁTica Educ. 2017, 20, 95–122. [CrossRef]spa
dc.relation.references44. López, M.J.G.; Guzmán, P.G. Magnitudes y medida: Medidas directas. In Matemáticas Para Maestros de Educación Primaria; Pirámide, Madrid, Spain, 2011; pp. 351–374.spa
dc.relation.references45. Valverde, G. Competencias Matemáticas Promovidas Desde la Razón y la Proporcionalidad en la Formación Inicial de Maestros de Educación Primaria; Universidad de Granada: Granada, Spain, 2013.spa
dc.relation.references46. Kelle, U.; Buchholtz, N. The combination of qualitative and quantitative research methods in mathematics education: A “mixed methods” study on the development of the professional knowledge of teachers. In Approaches to Qualitative Research in Mathematics Education; Springer: Berlin/Heidelberg, Germany, 2015; pp. 321–361.spa
dc.relation.references47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.spa
dc.relation.references48. Clement, J. Algebra word problem solutions: Thought processes underlying a common misconception. J. Res. Math. Educ. 1982, 13, 16–30. [CrossRef]spa
dc.relation.references49. Karplus, R.; Adi, H.; Lawson, A.E. Intellectual development beyond elementary school VIII: proportional, probabilistic, and correlational reasoning. Sch. Sci. Math. 1980, 80, 673–83. [CrossRef]spa
dc.relation.references50. Rupley, W.H. The effects of numerical characteristics on the difficulty of proportion problems. Diss. Abstr. Int. 1982, 254–263.spa
dc.relation.references51. Buforn, Á.; Llinares, S.; Fernández, C. Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. Rev. Mex. Investig. Educ. 2018, 23, 229–251.spa
dc.relation.references52. Burgos, M.; Godino, J.D. Prospective primary school teachers’ competence for analysing the difficulties in solving proportionality problem. Math. Educ. Res. J. 2020, 1–23. [CrossRef]spa
dc.relation.references53. Son, J.W. How preservice teachers interpret and respond to student errors: Ratio and proportion in similar rectangles. Educ. Stud. Math. 2013, 84, 49–70. [CrossRef]spa
dc.relation.references54. Sztajn, P.; Confrey, J.; Wilson, P.H.; Edgington, C. Learning trajectory based instruction: Toward a theory of teaching. Educ. Res. 2012, 41, 147–156. [CrossRef]spa
dc.relation.references55. Weiland, T.; Orrill, C.H.; Brown, R.E.; Nagar, G.G. Mathematics teachers’ ability to identify situations appropriate for proportional reasoning. Res. Math. Educ. 2019, 1–18. [CrossRef]spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal