Mostrar el registro sencillo del ítem

dc.contributor.authoramelec, viloriaspa
dc.contributor.authorVarela Izquierdo, Noelspa
dc.contributor.authorVargas, Jesússpa
dc.contributor.authorPineda, Omarspa
dc.date.accessioned2020-11-12T17:33:39Z
dc.date.available2020-11-12T17:33:39Z
dc.date.issued2020
dc.identifier.issn2194-5357spa
dc.identifier.urihttps://hdl.handle.net/11323/7276spa
dc.description.abstractThe techniques of content-based image recovery (CBIR) provide a solution to a problem of information retrieval that may arise as follows: from an image of interest to recover or obtain similar images from among those present in a large collection, using only features or features extracted from said images Banuchitra and Kungumaraj (Int J Eng Comput Sci (IJECS) 5 (2016) [1]). Similar images are understood as those in which the same object or scene is observed with variations in perspective, lighting conditions or scale. The stored images are preprocessed and then their corresponding descriptors are indexed. The query image is also preprocessed to extract its descriptor, which is then compared to those stored by applying appropriate similarity measures, which allow the recovery of those images that are similar to the query image. In the present work, a method was developed for the recovery of indexed images in databases from their visual content, without the need to make textual annotations. Feature vectors were obtained from visual contents using artificial neural network techniques with deep learning.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectConvolutional neural networksspa
dc.subjectGlobal descriptorsspa
dc.subjectImage retrievalspa
dc.subjectInformation retrievalspa
dc.titleMethod for the recovery of indexed images in databases from visual contentspa
dc.typePre-Publicaciónspa
dc.source.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090096092&doi=10.1007%2f978-981-15-6876-3_40&partnerID=40&md5=b1a210aefb1d5c3ecab03113a88361a6spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.date.embargoEnd2021-01-31
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesBanuchitra S, Kungumaraj K (2016) A comprehensive survey of content based image retrieval techniques. Int J Eng Comput Sci (IJECS) 5 (2016). https://ezproxy.cuc.edu.co:2067/10.18535/ijecs/v5i8.26. https://www.ijecs.inspa
dc.relation.referencesSimonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556spa
dc.relation.referencesSzegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going Deeper with Convolutions. CoRR, abs/1409.4842. http://arxiv.org/abs/1409.4842spa
dc.relation.referencesSzegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826spa
dc.relation.referencesSatish Tunga D, Jayadevappa D, Gururaj. C (2015) A comparative study of content based image retrieval trends and approaches. Int J Image Proc (IJIP) 9(3):127spa
dc.relation.referencesTzelepi M, Tefas A (2018) Deep convolutional learning for content based image retrieval. Neuro-computing 275:2467–2478spa
dc.relation.referencesVakhitov A, Kuzmin A, Lempitsky V (2016) Internet-based image retrieval using end-to-end trained deep distributions. arXiv preprint arXiv:1612.07697spa
dc.relation.referencesChen L, Zhang Y, Song ZL, Miao Z (2013) Automatic web services classification based on rough set theory. J Central South Univ 20:2708–2714spa
dc.relation.referencesPineda Lezama O, Gómez Dorta R (2017) Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innovare: J Sci Technol 5(2):61–75spa
dc.relation.referencesViloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Chamspa
dc.relation.referencesZhu F et al (2009) IBM Cloud computing powering a smarter planet. Libro Cloud Computing, Volumen 599.51/2009, pp 621–625spa
dc.relation.referencesMohanty R, Ravi V, Patra MR (2010) Web-services classification using intelligent techniques. Expert Syst Appl 37(7):5484–5490spa
dc.relation.referencesThames L, Schaefer D (2016) Softwaredefined cloud manufacturing for industry 4.0. Procedía CIRP, 52:12–17spa
dc.relation.referencesViloria A, Neira-Rodado D, Lezama OBP (2019) Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40 1249–1254spa
dc.relation.referencesSchweidel DA, Knox G (2013) Incorporating direct marketing activity into latent attrition models. Mark Sci 31(3):471–487spa
dc.relation.referencesSetnes M, Kaymak U (2001) Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Syst, IEEE Trans 9(1):153–163spa
dc.relation.referencesViloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40 1201–1206spa
dc.relation.referencesNisa R, Qamar U (2014) A text mining based approach for web service classification. Inf Syst e-Business Manage 1–18spa
dc.relation.referencesWu J, Chen L, Zheng Z, Lyu MR, Wu Z (2014) Clustering web services to facilitate service discovery. Knowl Inf Syst 38(1):207–229spa
dc.relation.referencesAlderson J (2015) A markerless motion capture technique for sport performance analysis and injury prevention: toward a big data, machine learning future. J Sci Med Sport 19:e79. https://ezproxy.cuc.edu.co:2067/10.1016/j.jsams.2015.12.192spa
dc.relation.referencesAlcalá R, Alcalá-Fdez J, Herrera F (2007) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635spa
dc.relation.referencesElsaid A, Salem R, Abdul-Kader H (2017) A dynamic stakeholder classification and prioritization based on hybrid rough-fuzzy method. J Software Eng 11:143–159spa
dc.relation.referencesMolina R, Calle FR, Gazzano JD, Petrino R, Lopez JCL (2019) Implementation of search process for a content-based image retrieval application on system on chip. In: 2019 X southern conference on programmable logic (SPL). IEEE, pp 97–102spa
dc.relation.referencesMaur HK, Faridkot P, Jain, P (2019) Content based image retrieval system using K-means clustering algorithm and SVM classifier techniquespa
dc.relation.referencesPothoff WJ, Price TG, Prasolov V (2020) U.S. Patent No. 10,565,070. U.S. Patent and Trademark Office, Washington, DCspa
dc.relation.referencesPoplawska J, Labib A, Reed DM, Ishizaka A (2015) Stakeholder profile definition and salience measurement with fuzzy logic and visual analytics applied to corporate social responsibility case study. J Clean Prod 105:103–115. https://ezproxy.cuc.edu.co:2067/10.1016/j.jclepro.2014.10.095spa
dc.relation.referencesPaulin M et al (2017) Convolutional patch representations for image retrieval: an unsupervised approach. Int J Comput Vis 165–166spa
dc.relation.referencesChandrasekhar V, Lin J, Liao Q, Morere O, Veillard A, Duan L, Poggio T (2017) Compression of deep neural networks for image instance retrieval. arXiv preprint arXiv:1701.04923spa
dc.relation.referencesZhang T, Qi G-J, Tang J, Wang J (2015) Sparse composite quantization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4548–4556spa
dc.relation.referencesGong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: European conference on computer vision. Springer, pp 392–407spa
dc.relation.referencesJegou H, Perronnin F, Douze M, Sanchez J, Perez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716spa
dc.relation.referencesPerronnin F, Larlus D (2015) Fisher vectors meet neural networks: a hybrid classification architecture. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3743–3752spa
dc.relation.referencesJegou H, Zisserman A (2014) Triangulation embedding and democratic aggregation for image search. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3310–3317spa
dc.type.coarhttp://purl.org/coar/resource_type/c_816bspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTOTRspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International