Show simple item record

dc.creatoramelec, viloria
dc.creatorde la Hoz, Ethel
dc.creatorPineda, Omar
dc.date.accessioned2020-11-12T17:33:59Z
dc.date.available2020-11-12T17:33:59Z
dc.date.issued2020
dc.identifier.issn2194-5357
dc.identifier.urihttps://hdl.handle.net/11323/7277
dc.description.abstractraumatic brain injury (TBI) represents a serious public health problem worldwide. It is the most common cause of death and disability in the young population (aged 15–45 years), with major family, social and economic implications [1]. In medical terms, the human body can be studied as an object. The reconstruction of bone structures after physical damage generated by such an unfortunate event as disease or trauma can range from the implementation of prostheses to the engineering of artificial bone implants [2]. To make a virtual or physical model of any human anatomy, it must first be captured in three dimensions in a way that can be used by computational processes. Most hospital scanners capture data from the entire body both internally and externally. These machines are typically medical imaging devices capable of scanning the entire human body, among which, the most common is the magnetic resonance imaging (MRI) equipment [3]. The goal of the research is to analyze the texture in magnetic resonance imaging and its relationship to bone mineral content (BMC) using simple linear regression.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectGenetic algorithmspa
dc.subjectSkull magnetic resonance imagingspa
dc.subjectTexture analysisspa
dc.titleTexture analysis in skull magnetic resonance imagingspa
dc.typePreprintspa
dcterms.referencesGalm, Brandon P., Buckless, C., Swearingen, B., Torriani, M., Klibanski, A., Bredella, Miriam A., Tritos, Nicholas A.: MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands. Pituitary 23(3), 212–222 (2020)spa
dcterms.referencesMitra, A., Tripathi, P. C., Bag, S.: Identification of astrocytoma grade using intensity, texture, and shape based features. In: Soft Computing for Problem Solving, pp. 455–465. Springer, Singapore (2020)spa
dcterms.referencesSabino, M.: Techniques for the manufacture of polymeric scaffolding with applications in fabric engineering. Rev. Latin Am. Metal, 120–146 (2017)spa
dcterms.referencesFelsenberg, D.: Structure and function of bone: supporting structure of collagen and hydroxyapatite. Pharm. Our Time 30(6), 488–494 (2001)spa
dcterms.referencesBahadure, N.B., Ray, A.K., Thethi, H.P.: Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int. J. Biomed. Imag. (2017)spa
dcterms.referencesLatha, M., Kavitha, G.: Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain. Magn. Reson. Mater. Phys. Biol. Med. 31(4), 483–499 (2018)spa
dcterms.referencesAvizenna, M.H., Soesanti, I., Ardiyanto, I.: Classification of brain magnetic resonance images based on statistical texture. In: 2018 1st International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering-Bioinformatics and Biomedical Engineering, vol. 1, pp. 1–5. IEEE (2018)spa
dcterms.referencesAli, A.H., Al-hadi, S.A., Naeemah, M.R., Mazher, A.N.: Classification of brain lesion using K-nearest neighbor technique and texture analysis. In: Journal Physics: Conference Series, vol. 1178, no. (1), p. 012018. IOP Publishing (2019)spa
dcterms.referencesSomwanshi, D.K., Yadav, A.K., Roy, R.: Medical images texture analysis: a review. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 436–441. IEEE (2017)spa
dcterms.referencesPaul, T.U., Ghosh, A., Bandhyopadhyay, S.K.: Brain tumor texture analysis-using wavelets and fractals. Int. J. Med. Imag. 4(4), 23 (2016)spa
dcterms.referencesKawashima, Y., Fujita, A., Buch, K., Li, B., Qureshi, M.M., Chapman, M.N., Sakai, O.: Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur. J. Radiol. 116, 212–218 (2019)spa
dcterms.referencesTa, D., Khan, M., Ishaque, A., Seres, P., Eurich, D., Yang, Y.H., Kalra, S.: Reliability of 3D texture analysis: a multicenter MRI study of the brain. J. Magn. Reson. Imag. 51(4), 1200–1209 (2019)spa
dcterms.referencesVarela, N., Silva, J., Gonzalez, F.M., Palencia, P., Palma, H.H., Pineda, O.B.: Method for the recovery of images in databases of rice grains from visual content. Procedia Comput. Sci. 170, 983–988 (2020)spa
dcterms.referencesChondro, P., Hu, H.C., Hung, H.Y., Chang, S.Y., Li, L.P.H., Ruan, S.J.: An effective occipitomental view enhancement based on adaptive morphological texture analysis. IEEE J. Biomed. Health Inform. 21(4), 1105–1113 (2016)spa
dcterms.referencesNair, J.K.R., Vallières, M., Mascarella, M.A., El Sabbagh, N., Duchatellier, C.F., Zeitouni, A., Shenouda, G., Chankowsky, J.: Magnetic resonance imaging texture analysis predicts recurrence in patients with nasopharyngeal carcinoma. Can. Assoc. Radiol. J. 70(4), 394–402 (2019)spa
dcterms.referencesLi, Y., Li, M.M., Zhang, Y., Cheng, J.L., Shang, Z.G., Bu, C.X.: Utility of texture analysis of magnetic resonance imaging in differential diagnosis of common pediatric cerebellar tumors in children. Zhonghua yi xue za zhi 96(23), 1853–1855 (2016)spa
dcterms.referencesLee, K.M., Kim, H.G., Lee, Y.H., Kim, E.J.: mDixon-based texture analysis of an intraosseous lipoma: a case report and current review for the dental clinician. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125(3), e67–e71 (2018)spa
dcterms.referencesViloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019)spa
dcterms.referencesChang, H.H., Hsieh, C.C.: Brain segmentation in MR images using a texture-based classifier associated with mathematical morphology. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3421–3424. IEEE 2017spa
dcterms.referencesLee, S., Lee, H., Kim, K.W.: Magnetic resonance imaging texture predicts progression to dementia due to Alzheimer disease earlier than hippocampal volume. J. Psychiatry Neurosci.: JPN 45(1), 7 (2020)spa
dcterms.referencesKe, C., Chen, H., Lv, X., Li, H., Zhang, Y., Chen, M., Hu, D., Ruan, G., Zhang, Y., Zhang, Y., Liu, L.: Differentiation between benign and nonbenign meningiomas by using texture analysis from multiparametric MRI. J. Magn. Reson. Imag. 51(6), 1810–1820 (2019)spa
dcterms.referencesIqbal, S., Khan, M.U.G., Saba, T., Rehman, A.: Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomed. Eng. Lett. 8(1), 5–28 (2018)spa
dcterms.referencesKim, D., Wang, N.C., Ravikumar, V., Raghuram, D.R., Li, J., Patel, A., Wendt, R.E., Rao, G., Rao, A.: Prediction of 1p/19q codeletion in diffuse glioma patients using preoperative multiparametric magnetic resonance imaging. Front. Comput. Neurosci. 13, 52 (2019)spa
dcterms.referencesBasheera, S., Ram, M.S.S.: Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s & Dementia: Transl. Res. Clin. Interv. 5, 974–986 (2019)spa
dcterms.referencesGGrist, J.T., Withey, S., MacPherson, L., Oates, A., Powell, S., Novak, J., Abernethy, L., Pizer, B., Grundy, R., Bailey, S., Mitra, D., Arvanitis, T.N., Auer, D.P., Avula, S., Peet, A.C.: Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study. NeuroImage: Clin. 25, 102172 (2020)spa
dcterms.referencesBaiocco, S., Sah, B.R., Mallia, A., Kelly-Morland, C., Neji, R., Stirling, J.J., Jeljeli, S., Bevilacqua, A., Cook, G.J., Goh, V.: Exploratory radiomic features from integrated 18 F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer. Eur. J. Nucl. Med. Mol. Imag. 46(7), 1478–1484 (2019)spa
dcterms.referencesViloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to postgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)spa
dcterms.referencesSu, C.Q., Zhang, X., Pan, T., Chen, X.T., Chen, W., Duan, S.F., Ji, J., Hu, W.X., Lu, S.S., Hong, X.N.: Texture analysis of high b-value diffusion-weighted imaging for evaluating consistency of pituitary macroadenomas. J. Magn. Reson. Imag. 51(5), 1507–1513 (2019)spa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.source.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85089209036&doi=10.1007%2f978-3-030-51859-2_12&origin=inward&txGid=1e875e0c53741f62be937f585a57c8f2spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.date.embargoEnd2021-05-07


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International