Mostrar el registro sencillo del ítem

dc.contributor.authorRajesh Kumar, K.spa
dc.contributor.authorGobinath, R.spa
dc.contributor.authorShyamala, G.spa
dc.contributor.authorViloria, Emelecspa
dc.contributor.authorVarela, Noelspa
dc.date.accessioned2020-11-12T17:54:05Z
dc.date.available2020-11-12T17:54:05Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/11323/7289spa
dc.description.abstractThe research is undertaken to study the combined reinforcing and stabilizing effect of Eco sand, Metakaolin added with Polypropylene fibers in silty soil obtained from Nilgris district. In this work, an effort is made to obtain the impact of adding polypropylene fibers in fixed ratios (eco sand10%_metakaolin 5%) tandem with two novel stabilizing agents in various proportions (polypropylene fiber 0.1% & 0.2%) is the effects of non-traditional additives on the geotechnical properties of soils have been the focus of much investigation in recent years. It has been well established that the plasticity index and also the size, shape, and arrangement of soil particles will affect the treatment process of natural soils with additives. Stabilization of soils that are subjected to a regular variation in the temperature requires the most probable selection of suitable stabilizers and admixtures to improve the strength of the soil. This study investigates the resistance of the Nilgiris soil over the freeze–thaw reaction. The soil is stabilized with Eco Sand, Metakaolin, and polypropylene fiber (synthetic fiber). The index and engineering properties of the soil were determined in the laboratory. The soil is stabilized with two variants of an equal proportion of EcoSand-10%, Metakaolin-5%, and varying the polypropylene fiber in a proportion of 0.1% and 0.2% with the weight of the soil. UCS test was conducted for the virgin sample as well as the sample after four freeze–thaw cycles. The soil sample is kept at 0° for 24 h and later at 28° for 24 h to complete a cycle. It is determined that the admixtures added has increased the resistance of the soil over the freeze–thaw reaction after the cycles. The polypropylene fiber has increased the bonding of soil, and hence it stabilizes the soil during a large periodical variation in the temperature of the soil.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceMaterials Today: Proceedingsspa
dc.subjectFreeze-thaw testspa
dc.subjectPolypropylene fiberspa
dc.subjectSoil stabilizationspa
dc.titleFree thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslidesspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2214785320307720spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.matpr.2020.02.041spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAbdulrahman Aldaooda, Bouaskera Marwen, Muzahim Al-Mukhtara, Impact of freeze-thaw cycles on the mechanical behavior of lime stabilized Gypseous soils, Cold Reg. Sci. Technol. 99 (2014) 38–45.spa
dc.relation.referencesI.I. Akinwumi, O.I. Aidomojie, Effect of corncob ash on the geotechnical properties of lateritic soil stabilized with Portland cement, Int. J. Geomatics Geosci. 5 (3) (2015) 375–392.spa
dc.relation.referencesS.T. Banu, G. Chitra, P.O. Awoyera, R. Gobinath, Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics, Aust. J. Struct. Eng. 20 (3) (2019) 198–203.spa
dc.relation.referencesS. Altun, A. Sezer, A. Erol, The effects of additives and curing conditions on the mechanical behavior of silty soil, J. Cold Reg. Sci. Technol. 56 (2) (2009) 135–140.spa
dc.relation.referencesM.R. Asgari, A.B. Dezfuli, M. Bayat, Experimental study on stabilization of a low plasticity clayey soil with cement/lime, Arabian J. Geosci. 8 (2015) 1439–1452.spa
dc.relation.referencesF.G. Bell, Cement stabilization and clay soils, with examples, Environ. Eng. Geosci. 1 (2) (1995) 139e151.spa
dc.relation.referencesA.K. Bera, A. Ghosh, A. Ghosh, Behaviour of model footing on pond ash, Geotech Geol. Eng. 25 (2007) 315–325.spa
dc.relation.referencesP.O. Awoyera, A. Adesina, R. Gobinath, 2019, Role of recycling fine materials as filler for improving performance of concrete - a review, Aust. J. Civ. Eng. 17 (2) (2019) 85–95.spa
dc.relation.referencesS.T. Banu, G. Chitra, R. Gobinath, P.O. Awoyera, E. Ashokkumar, 2018, Sustainable structural retrofitting of corroded concrete using basalt fibre composte, Ecol., Environ. Conserv. 24 (3) (2018) 353–357.spa
dc.relation.referencesK. Rajesh Kumar, S. Karthik, R. Ramamohan, P.O. Awoyera, R. Gobinath, A. Shivakrishna, P. Murthi, Shear resistance of portal frame reinforced with Bamboo and steel rebar: Experimental and numerical evaluation, Int. J. Recent Technol. Eng. 8 (1) (2019) 445–452.spa
dc.relation.referencesBIS, Methods of Test for Soils: Determination of Consolidation (second revision), IS 2720: Part 15, Bureau of Indian Standards, New Delhi, 1986.spa
dc.relation.referencesS.K. Chand, C. Subbarao, Strength and slake durability of lime stabilized pondash, J. Mater. Civ. Eng. 19 (2007) 601–608.spa
dc.relation.referencesN.C. Consoli, P.D.M. Prietto, L.A. Ulbrich, Influence of fiber and cement addition on the behavior of sandy soil, J. Geotech. Geoenviron. Eng. 124 (1211–1214) (1998) 14.spa
dc.relation.referencesN.C. Consoli, R.R. de Moraes, L. Festugato, Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils, Geosynth. Int. 18 (2) (2011) 57–62.spa
dc.relation.referencesF.L.L.E. Carneiro, A. Barcellos, Concrete tensile strength, RILEM Bull. 13 (1953) 97–107.spa
dc.relation.referencesDeepak Gupta, Arvind Kumar, Strength characterization of cement stabilized and fiber reinforced clay–pond ash mixes, Int. J. Geosynth. Ground Eng. 2 (2016) 32, https://doi.org/10.1007/s40891-016-0069-z.spa
dc.relation.referencesEren Komurlu, Ayhan Kesimal, Serhat Demir, Experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus, Can. Geotech. J. 53 (2) (2016) 360–372, https://doi.org/10.1139/cgj-2014-0356.spa
dc.relation.referencesG.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, Muhamed Anas, R. Arul Murugan, S. Yogeswaran, Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409, https://doi.org/10.1007/s40999-016-0056-8.spa
dc.relation.referencesG.P. Ganapathy, R. Gobinath, I.I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran, S. Hema, Bioenzymatic stabilization of a soil having poor engineering properties, Int. J. Civil Eng. 15 (3) (2017) 401–409.spa
dc.relation.referencesM. Ghazavi, R. Mahya, The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay, J. Cold Reg. Sci. Technol. 61 (2–3) (2010) 125–131spa
dc.relation.referencesR. Gobinath, G.P. Ganapathy, I.I. Akinwumi, Evaluating the use of lemon grassroots for the reinforcement of a landslide-affected soil from Nilgiris district, Tamil Nadu, India, J. Mater. Environ. Sci. 6 (10) (2015) 2681–2687.spa
dc.relation.referencesR. Gobinath, G.P. Ganapathy, I.I. Akinwumi, P.O. Awoyera, K. Shridevi, T. Dhivapriya, B. Lalithambigai, R. Mithuna, Soil stabilisation using asbestos free fiber powder and silica grit, J. Teknol., (2017), In press.spa
dc.relation.referencesA. Gümüs, er C, S, enol, Effect of fly ash and different lengths ofpolypropylene fibers content on the soft soils. Int. J. Civil Eng., 12(2) (2014) 134–145spa
dc.relation.referencesH. Gullu, K. Hazirbaba, Unconfined compressive strength and post-freeze–thaw behavior of fine-grained soils treated with geofiber and synthetic fluid, J. Cold Reg. Sci. Technol. 62 (2) (2010) 142–150.spa
dc.relation.referencesM. Hohmann-Porebska, Microfabric effects in frozen clays concerning geotechnical parameters, Appl. Clay Sci. 21 (2002) 77–87.spa
dc.relation.referencesA. Kumar, B.S. Walia, J. Mohan, Compressive strength of fiber-reinforced highly compressible clay, Constr. Build. Mater. 10 (20) (2005) 1063–1068.spa
dc.relation.referencesM.H. Maher, D.H. Gray, Static response of sands reinforced with randomly distributed fibers, J. Geotech Eng. 116 (11) (1990) 1661–1677.spa
dc.relation.referencesMuhannad Ismeika, M. Ahmed, Ashteyat band Khaled Z. Ramadan, Stabilisation of fine-grained soils with saline water, Eur. J. Environ. Civil Eng. 17 (1) (2013) 32–45.spa
dc.relation.referencesMurat Olgun, The effects and optimization of additives for expansive clays under freeze-thaw conditions, Cold Reg. Sci. Technol. 93 (2013) (2013) 36–46.spa
dc.relation.referencesMarshall R. Thompson, Split Tensile Strength of Lime-Stabilized Soils Committee on Lime and Lime-Fly Ash Stabilization and Presented at the 44th Annual Meeting. 69-81spa
dc.relation.referencesR. Gobinath, G.P. Ganapathy, I.I. Akinwumi, S. Kovendiran, S. Hema, M. Thangaraj, Plasticity, strength, permeability and compressibility characteristics of black cotton soil stabilized with precipitated silica, J. Cent. South Univ. 23 (2016) 2688, https://doi.org/10.1007/s11771-016-3330-7.spa
dc.relation.referencesB. Ramanathan, V. Raman, Split tensile strength of cohesive soils, Soils Found. 14 (1) (1974) 71–76.spa
dc.relation.referencesG. Ranjan, R.M. Vasan, H.D. Charan, Probabilistic analysis of randomly distributed fiber-reinforced soil, J. Geotech. Eng. 122 (6) (1996) 419–426.spa
dc.relation.referencesRoustaei, Mahya, Eslami, Abolfazl, Ghazavi, Mahmoud, Effects of freezethaw cycles on fiber-reinforced fine-grained soil concerning geotechnical parameters, Cold Reg. Sci. Technol. (2015), https://doi.org/10.1016/j.coldregions.2015.09.011.spa
dc.relation.referencesR. Sarkar, S.M. Abbas, J.T. Shahu, A comparative study of geotechnical behavior of lime stabilized pond ashes from Delhi region, Int. J. Geomate 1 (3) (2012) 273–279spa
dc.relation.referencesSeyed Esmaeil Mousavi, Aliakbar Karamvand, Assessment of strength development in stabilized soil with CBR PLUS and silica sand, J. Traffic Transp. Eng. (English edition) 4 (4) (2017) 412–421.spa
dc.relation.referencesN.K. Sharma, S.K. Swain, U.C. Sahoo, Stabilization of a clayey soil with fly-ash and lime: a micro-level investigation, Geotech. Geol. Eng. 30 (5) (2012), 1197e1205.spa
dc.relation.referencesS. Shoop, M. Kestler, J. Stark, C. Ryerson, R. Affleck, Rapid stabilization of thawing soils: field experience and application, J. Terramech. 39 (4) (2003) 181–194.spa
dc.relation.referencesD.K. Soni, A. Jain, Effect of freeze-thaw, and wetting–drying on tensile strength of lime-fly ash stabilized black cotton soil, in: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008, pp. 2285–2291.spa
dc.relation.referencesYang Zhanga, Alex E. Johnson, David J. White, Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials, Cold Reg. Sci. Technol. 122 (2016) 50–57.spa
dc.relation.referencesA.S. Zaimoglu, Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers, J. Cold Reg. Sci. Technol. 60 (1) (2010) 63–65spa
dc.relation.referencesT. Ravi kumar, A. Siva Krishna, Design and Testing of Fly-Ash Based Geo Polymer Concrete, Int. J. Civ Eng. Technol. 8 (1) (2017) 480–491.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International