dc.contributor.author | Silva, Jesús | |
dc.contributor.author | Romero, Ligia | |
dc.contributor.author | solano, darwin | |
dc.contributor.author | Fernández, Claudia | |
dc.contributor.author | Pineda, Omar | |
dc.contributor.author | Rojas, Karina | |
dc.date.accessioned | 2020-11-12T21:10:43Z | |
dc.date.available | 2020-11-12T21:10:43Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 2194-5357 | |
dc.identifier.uri | https://hdl.handle.net/11323/7291 | |
dc.description.abstract | During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem, with learning-teaching interaction being a transcendental element (Muñoz-Repiso and Gómez-Pablos in Edutec. Revista Electrónica de Tecnología Educativa 52: a291–a291 (2015), [1]. This research describes a predicative model of academic performance using neural network techniques on a real data set. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Corporación Universidad de la Costa | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Advances in Intelligent Systems and Computing | spa |
dc.subject | Academic performance | spa |
dc.subject | Big data | spa |
dc.subject | Neural networks | spa |
dc.subject | Learning analytics | spa |
dc.title | Model for predicting academic performance through artificial intelligence | spa |
dc.type | Pre-Publicación | spa |
dcterms.references | Muñoz-Repiso AGV, Gómez-Pablos VB (2015) Evaluación de una experiencia de aprendizaje colaborativo con TIC desarrollada en un centro de Educación Primaria. Edutec. Revista Electrónica de Tecnología Educativa 51:a291–a291 | spa |
dcterms.references | Fernández M, Valverde J (2014) Comunidades de práctica: un modelo de modelo de intervención desde el aprendizaje colaborativo en entornos virtuales. Revista Comunicar 42:97–105 | spa |
dcterms.references | Vasquez C, Torres M, Viloria A (2017) Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J Eng Appl Sci 12(11):2963–2965 | spa |
dcterms.references | Torres-Samuel M, Vásquez C, Viloria A, Lis-Gutiérrez JP, Borrero TC, Varela N (2018) Web visibility profiles of Top100 Latin American universities. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12 | spa |
dcterms.references | Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12 | spa |
dcterms.references | Abu A (2016) Educational data mining & students’ performance prediction. Int J Adv Comput Sci Appl (IJACSA), 212–220 | spa |
dcterms.references | Daud A, Radi N, Ayaz R, Lytras M, Abbas F (2017) Predicting student performance using advanced learning analytics. In: Proceedings of the 26th international conference on world wide web companion. WWW ‘17 Companion, Australia, pp 415–421 | spa |
dcterms.references | Viloriaa A, Lezamab OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206 | spa |
dcterms.references | González JC, Ramos S, Hernández S (2017) Modelo Difuso del Rendimiento Académico Bi-explicado. Revista de Sistemas y Gestión Educativa, 55–64 | spa |
dcterms.references | Hamasa H, Indiradevi S, Kizhakkethottam J (2016) Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technol, 326–332 | spa |
dcterms.references | Hu Y, Lo C, Shih S (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav, 469–478 | spa |
dcterms.references | Huang S, Fang N (2013) Predicting student academic performance in an engineering dynamics course: a comparison of four types of predictive mathematical models. Comput Educ, 133–145 | spa |
dcterms.references | Il-Hyun J, Yeonjeong P, Jeonghyun K, Jongwoo S (2014) Analysis of online behavior and prediction of learning performance in blended learning environments. Educ Technol Int, 71–88 | spa |
dcterms.references | Rojas P (2017) Learning analytics: a literature review. Educ Educ, 106–128 | spa |
dcterms.references | Schalk P, Wick D, Turner P, Ramsdell M (2011) Predictive assessment of student performance for early strategic guidance. In: Frontiers in education conference (FIE). Rapid City, Estados Unidos de América | spa |
dcterms.references | Usman O, Adenubi A (2013) Artificial neural network (ANN) model for predicting students’ academic performance. J Sci Inf Technol, 23–37 | spa |
dcterms.references | Ye C, Biswas G (2014) Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. J Learn Analytics, 169–172 | spa |
dcterms.references | Zacharis NZ (2016) Predicting student academic performance in blended learning using artificial neural networks. Int J Artif Intell Appl (IJAIA), 17–29 | spa |
dcterms.references | Expósito C (2018). Valores básicos del profesorado. Una aproximación desde el modelo axiológico de Shalom Schwartz. Educación y educadores. 307–325. Universidad de la sabana, Colombia | spa |
dcterms.references | Ferrer J (2017) Labor docente del profesor principiante universitario: reto de la universidad en espacios globalizados. Ponencia presentada en jornadas científicas Dr. José Gregorio Hernández. Universidad Dr. José Gregorio Hernández. Venezuela | spa |
dcterms.references | Fondón I, Madero M, Sarmiento A (2010) Principales problemas de los profesores principiantes en la enseñanza universitaria. En Formación universitaria 3(2):21–28 | spa |
dcterms.references | Fontrodona J (2003) Ciencia y práctica en la acción directiva. Ediciones Rialp, España | spa |
dcterms.references | Gewerc A, Montero L, Lama M (2014) Colaboración y redes sociales en la enseñanza universitaria. Comunicar 42(21):55–63 | spa |
dcterms.references | Gómez L, García C (2014) Las competencias sociales como dinamizadoras de la interacción y el aprendizaje colaborativo. Ediciones hispanoamericanas. Universidad nacional abierta y a distancia, Colombia | spa |
dcterms.references | Gros B (2008) Aprendizaje, conexiones y artefactos de la producción colaborativa de conocimiento. Editorial Cedisa, España | spa |
dcterms.references | Hernández-Sellés N, González-Sanmamedy M, Muñoz-Carril PC (2015) El rol docente en las ecologías de aprendizaje: análisis de una experiencia de aprendizaje colaborativo en entornos virtuales. Profesorado. Revista de Currículum y Formación de Profesorado 19(2):147–163 | spa |
dc.source.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090094518&doi=10.1007%2f978-981-15-6876-3_41&partnerID=40&md5=8195fed2ff7082bc4a3977ff9b05616b | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.date.embargoEnd | 2021-01-31 | |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |