Show simple item record

dc.contributor.authorSilva, Jesús
dc.contributor.authorCera Visbal, Juan Manuel
dc.contributor.authorVargas, Jesús
dc.contributor.authorPineda, Omar
dc.description.abstractThis paper presents a series of experiments aimed at the sentiment analysis on texts posted in Twitter. In particular, several morphological characteristics are studied for the representation of texts in order to determine those that provide the best performance when detecting the emotional charge contained in the
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectMorphological characteristicsspa
dc.subjectSentiment analysisspa
dc.titleSentiment analysis in twitter: Impact of morphological characteristicsspa
dcterms.referencesZahra, K., Imran, M., Ostermann, F.O.: Automatic identification of eyewitness messages on Twitter during disasters. Inf. Process. Manag. 57(1), 102107 (2020)spa
dcterms.referencesKaul, A., Mittal, V., Chaudhary, M., Arora, A.: Persona classification of celebrity Twitter users. In: Digital and Social Media Marketing, pp. 109–125. Springer, Cham (2020)spa
dcterms.referencesMotamedi, R., Jamshidi, S., Rejaie, R., Willinger, W.: Examining the evolution of the Twitter elite network. Soc. Netw. Anal. Mining 10(1), 1 (2020)spa
dcterms.referencesRodríguez-Ruiz, J., Mata-Sánchez, J.I., Monroy, R., Loyola-González, O., López-Cuevas, A.: A one-class classification approach for bot detection on Twitter. Comput. Secur. 91, 101715 (2020)spa
dcterms.referencesVásquez, C., Torres-Samuel, M., Viloria, A., Borrero, T.C., Varela, N., Lis-Gutiérrez, J.P., Gaitán-Angulo, M.: Visibility of research in universities: the triad product-researcher-institution. Case: Latin american countries. In: International Conference on Data Mining and Big Data, pp. 225–234. Springer, Cham, June 2018spa
dcterms.referencesBurnap, P., Williams, M.L.: Us and them: identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Sci. 5(1), 11 (2016)spa
dcterms.referencesLuo, F., Cao, G., Mulligan, K., Li, X.: Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago. Appl. Geogr. 70, 11–25 (2016)spa
dcterms.referencesKabakuş, A.T., Şimşek, M.: An analysis of the characteristics of verified Twitter users. Sakarya Univ. J. Comput. Inf. Sci. 2(3), 180–186 (2019)spa
dcterms.referencesNguyen, Q.C., Brunisholz, K.D., Yu, W., McCullough, M., Hanson, H.A., Litchman, M.L., Li, F., Wan, Y., VanDerslice, J.A., Wen, M., Smith, K.R.: Twitter-derived neighborhood characteristics associated with obesity and diabetes. Sci. Rep. 7(1), 1–10 (2017)spa
dcterms.referencesGurajala, S., White, J.S., Hudson, B., Voter, B.R., Matthews, J.N.: Profile characteristics of fake Twitter accounts. Big Data Soc. 3(2), 2053951716674236 (2016)spa
dcterms.referencesChu, K.H., Majmundar, A., Allem, J.P., Soto, D.W., Cruz, T.B., Unger, J.B.: Tobacco use behaviors, attitudes, and demographic characteristics of tobacco opinion leaders and their followers: Twitter analysis. J. Med. Internet Res. 21(6), e12676 (2019)spa
dcterms.referencesAgarwal, A., Toshniwal, D.: Face off: travel habits, road conditions and traffic city characteristics bared using Twitter. IEEE Access 7, 66536–66552 (2019)spa
dcterms.referencesKim, Y.H., Woo, H.J.: Exploring Spatiotemporal Characteristics of Twitter data Using Topic Modelling Techniques. Abstracts of the ICA, 1 (2019)spa
dcterms.referencesJamison, A.M., Broniatowski, D.A., Quinn, S.C.: Malicious actors on Twitter: a guide for public health researchers. Am. J. Public Health 109(5), 688–692 (2019)spa
dcterms.referencesTorres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 Latin American universities. In: International Conference on Data Mining and Big Data, pp. 254–262. Springer, Cham, June 2018spa
dcterms.referencesSaeidi, M., Venerandi, A., Capra, L., Riedel, S.: Community Question Answering Platforms vs. Twitter for Predicting Characteristics of Urban Neighbourhoods. arXiv preprint arXiv:1701.04653 (2017)spa
dcterms.referencesSilva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020)spa
dcterms.referencesSilva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020spa

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2641]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International