Show simple item record

dc.creatorGallego-Cartagena, Euler
dc.creatorMORILLAS, HECTOR
dc.creatorCarrero Carrero, Antonio José
dc.creatorMadariaga, Juan Manuel
dc.creatorMaguregui, Maite
dc.date.accessioned2020-11-13T16:03:03Z
dc.date.available2020-11-13T16:03:03Z
dc.date.issued2021
dc.identifier.issn00456535
dc.identifier.urihttps://hdl.handle.net/11323/7306
dc.description.abstractIn analytical chemistry, biomonitoring is known as the methodology, which consider the use of living organisms to monitor and assess the impact of different contaminants in a known area. This type of monitoring is a relatively inexpensive method and easy to implement, being a viable alternative to be developed in sites where there is no infrastructure/instruments for a convenctional air quality monitoring. These organisms, having the capability to monitor the pollution, are also known as passive biomonitors (PBs), since they are able to identify possible contamination sources without the need of any additional tool. In this work, a multianalytical methodology was applied to verify the usefulness of naturally growing Grimmia genus mosses as PBs of atmospheric heavy metals pollution. Once mosses were identified according to their morphology and taxonomy, thei ability to accumulate particulate matter (PM) was determined by SEM. EDS coupled to SEM also allowed to identify the main metallic particles deposited and finally, an acid digestion of the mosses and a subsequent ICP-MS study define more precisely the levels of metals accumulated on each collected moss. The study was focused on six sampling locations from the Bilbao Metropolitan area (Biscay, Basque Country, north of Spain). The experimental evidences obtained allowed to propose naturally growing Grimmia genus as PB of atmospheric heavy metals pollution and to identify the anthropogenic sources that contribute to the emission of the airborne particulate matter rich in metals, evaluating in this sense the atmospheric heavy metals pollution of the selected locations.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceChemospherespa
dc.subjectAtmospheric heavy metals pollutionspa
dc.subjectBilbao metropolitan áreaspa
dc.subjectGrimmia genus mossesspa
dc.subjectICP-MSspa
dc.subjectPassive biomonitorsspa
dc.subjectSEM-EDSspa
dc.titleNaturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan areaspa
dc.typePreprintspa
dcterms.referencesAbdel-Latif and Saleh, 2012 N.M. Abdel-Latif, I.A. Saleh Heavy metals contamination in roadside dust along major roads and correlation with urbanization activities in Cairo, Egypt J. Am. Sci., 8 (2012), pp. 379-389spa
dcterms.referencesAdrović et al., 2017 F. Adrović, A. Damjanović, J. Adrović, J. Kamberović, N. Hadžiselimović Study of 137 Cs concentration activity in mosses of Bosnia and Herzegovina Int J. Modern Biol Res., 5 (2017), pp. 32-41spa
dcterms.referencesAktar et al., 2010 M.W. Aktar, M. Paramasivam, M. Ganguly, S. Purkait, D. Sengupta Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: a study for toxicity and ecological impact Environ. Monit. Assess., 160 (2010), pp. 207-213spa
dcterms.referencesAziz and Khdir, 2016 F.H. Aziz, S.F. Khdir Heavy metal accumulation by Mosses as affected by roadside pollutants J. Advan. Lab. Res. Bio., 7 (3) (2016), pp. 86-93spa
dcterms.referencesBáez et al., 2007 A. Báez, R. Belmont, R. García, H. Padilla, M.C. Torres Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico Atmos. Res., 86 (2007), pp. 61-75spa
dcterms.referencesBaltrėnaitė et al., 2014 E. Baltrėnaitė, P. Baltrėnas, A. Lietuvninkas, V. Šerevičienė, E. Zuokaitė Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media Environ. Sci. Pollut. Res., 21 (2014), pp. 299-313spa
dcterms.referencesBarnhart, 1997 J. Barnhart Chromium chemistry and implications for environmental fate and toxicity Soil Sediment Contam., 6 (1997), pp. 561-568spa
dcterms.referencesBelivermiş et al., 2008 M. Belivermiş, Ö. Kılıç, Y. Çotuk Heavy metal and radioactivity concentrations in soil and moss samples from Istanbul, Turkey Euro. J. Biol., 67 (1) (2008), pp. 39-47spa
dcterms.referencesBlake and Goulding, 2002 L. Blake, K.W.T. Goulding Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK Plant Soil, 240 (2002), pp. 235-251spa
dcterms.referencesBoquete et al., 2014 M.T. Boquete, J.R. Aboal, A. Carballeira, J.A. Fernández Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals Atmos. Environ., 86 (2014), pp. 28-34spa
dcterms.referencesBoquete et al., 2013 M.T. Boquete, J.Á. Fernández, A. Carballeira, J.R. Aboal Assessing the tolerance of the terrestrial moss Pseudoscleropodium purum to high levels of atmospheric heavy metals: a reciprocal transplant study Sci. Total Environ., 461 (2013), pp. 552-559spa
dcterms.referencesBoquete et al., 2009 M.T. Boquete, J.Á. Fernández, J.R. Aboal, C. Real, A. Carballeira Spatial structure of trace elements in extensive biomonitoring surveys with terrestrial mosses Sci. Total Environ., 408 (2009), pp. 153-162spa
dcterms.referencesBoyd et al., 2009 R. Boyd, S.J. Barnes, P. De Caritat, V.A. Chekushin, V.A. Melezhik, C. Reimann, M.L. Zientek Emissions from the copper–nickel industry on the Kola Peninsula and at Noril’sk, Russia Atmos. Environ., 43 (2009), pp. 1474-1480spa
dcterms.referencesozlaker et al., 2013 A. Bozlaker, B. Buzcu-Güven, M.P. Fraser, S. Chellam Insights into PM10 sources in Houston, Texas: role of petroleum refineries in enriching lanthanoid metals during episodic emission events Atmos. Environ., 69 (2013), pp. 109-117spa
dcterms.referencesCarballeira and López, 1997 A. Carballeira, J. López Physiological and statistical methods to identify background levels of metals in aquatic bryophytes: dependence on lithology J. Environ. Qual., 26 (1997), pp. 980-988spa
dcterms.referencesCarrero et al., 2013 J.A. Carrero, I. Arrizabalaga, J. Bustamante, N. Goienaga, G. Arana, J.M. Madariaga Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of traffic-related elements Sci. Total Environ., 458 (2013), pp. 427-434spa
dcterms.referencesCasas, 1991 C. Casas New checklist of Spanish mosses Orsis, 6 (1991), pp. 3-26spa
dcterms.referencesCesa et al., 2006 M. Cesa, A. Bizzotto, C. Ferraro, F. Fumagalli, P.L. Nimis Assessment of intermittent trace element pollution by moss bags Environ. Pollut., 144 (2006), pp. 886-892spa
dcterms.referencesChakrabortty and Paratkar, 2006 S. Chakrabortty, G.T. Paratkar Biomonitoring of trace element air pollution using mosses Aerosol. Air. Qual. Res., 6 (2006), pp. 247-258spa
dcterms.referencesChen et al., 2019 H. Chen, S.H. Kim, C. Kim, J. Chen, C. Jang Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 °C Corrosion Sci., 156 (2019), pp. 16-31spa
dcterms.referencesChia et al., 2008 T. Chia, C.Y. Shu, H.L. Chen Oxidative damage of workers in secondary metal recovery plants affected by smoking status and joining the smelting work Ind. Health, 46 (2008), pp. 174-182spa
dcterms.referencesCortis et al., 2016 P. Cortis, C. Vannini, A. Cogoni, F. De Mattia, M. Bracale, V. Mezzasalma, M. Labra Chemical, molecular, and proteomic analyses of moss bag biomonitoring in a petrochemical area of Sardinia (Italy) Environ. Sci. Pollut. Res., 23 (3) (2016), pp. 2288-2300spa
dcterms.referencesCrandall-Stotler and Bartholomew-Began, 2007 B.J. Crandall-Stotler, S.E. Bartholomew-Began Morphology of mosses (phylum bryophyta) Flora of North America Editorial Committee, Oxford University Press, New York (2007), pp. 3-13 Flora of North America North of Mexico. Volume 27: Bryopsida: Mosses, Part 1spa
dcterms.referencesroteau et al., 2005 M.N. Croteau, S.N. Luoma, A.R. Stewart Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature Limnol. Oceanogr., 50 (2005), pp. 1511-1519spa
dcterms.referencesDai et al., 2016 Q. Dai, L. Li, T. Li, X. Bi, Y. Zhang, J. Wu, B. Liu, J. Gao, W. Gu, L. Yao, Y. Feng Atmospheric signature and potential sources of rare earth elements in size-resolved particulate matter in a megacity of China Aerosol. Air. Qual. Res., 16 (2016), pp. 2085-2095spa
dcterms.referencesDao and Beardall, 2016 L.H. Dao, J. Beardall Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae Chemosphere, 147 (2016), pp. 420-429spa
dcterms.referencesDavidson et al., 2005 C.I. Davidson, R.F. Phalen, P.A. Solomon Airborne particulate matter and human health: a review Aerosol Sci. Technol., 39 (2005), pp. 737-749spa
dcterms.referencesDavies et al., 2007 L. Davies, J.W. Bates, J.N. Bell, P.W. James, O.W. Purvis Diversity and sensitivity of epiphytes to oxides of nitrogen in London Environ. Pollut., 146 (2) (2007), pp. 299-310spa
dcterms.referencesDe la Campa et al., 2011 A.S. De la Campa, T. Moreno, J. De la Rosa, A. Alastuey, X. Querol Size distribution and chemical composition of metalliferous stack emissions in the San Roque petroleum refinery complex, southern Spain J. Hazard Mater., 190 (2011), pp. 713-722spa
dcterms.referencesDemir et al., 2014 E. Demir, A. Creus, R. Marcos Genotoxicity and DNA repair processes of zinc oxide nanoparticles J. Toxicol. Environ. Health A., 77 (2014), pp. 1292-1303spa
dcterms.referencesDhal et al., 2018 G.C. Dhal, S. Dey, D. Mohan, R. Prasad Simultaneous abatement of diesel soot and NOX emissions by effective catalysts at low temperature: an overview Catal. Rev., 60 (2018), pp. 437-496spa
dcterms.referencesDonovan et al., 2016 G.H. Donovan, S.E. Jovan, D. Gatziolis, I. Burstyn, Y.L. Michael, M.C. Amacher, V.J. Monleon Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution Sci. Total Environ., 559 (2016), pp. 84-93spa
dcterms.referencesDuruibe et al., 2007 J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu Heavy metal pollution and human biotoxic effects Int. J. Phys. Sci., 2 (2007), pp. 112-118spa
dcterms.referencesEdy et al., 2019 J.E. Edy, H.N. McMurray, K.R. Lammers, A.C.A. deVooys Kinetics of corrosion-driven cathodic disbondment on organic coated trivalent chromium metal-oxide-carbide coatings on steel Corrosion Sci., 157 (2019), pp. 51-61spa
dcterms.referencesY.S. Eom, J.H. Hong, S.J. Lee, E.J. Lee, J.S. Cha, D.G. Lee, S.A. Bang Emission factors of air toxics from semiconductor manufacturing in Korea J. Air. Waste. Ma., 56 (2006), pp. 1518-1524spa
dcterms.referencesEroglu et al., 2015 A. Eroglu, Z. Dogan, E.G. Kanak, G. Atli, M. Canli Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism Environ. Sci. Pollut. Res. Int., 22 (2015), pp. 3229-3237spa
dcterms.referencesFernández et al., 2015 J.A. Fernández, M.T. Boquete, A. Carballeira, J.R. Aboal A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation Sci. Total Environ., 517 (2015), pp. 132-150spa
dcterms.referencesFernández et al., 2002 J.A. Fernández, A. Ederra, E. Núñez, J. Martınez-Abaigar, M. Infante, P. Heras, A. Carballeira Biomonitoring of metal deposition in northern Spain by moss analysis Sci. Total Environ., 300 (2002), pp. 115-127spa
dcterms.referencesFernández et al., 2007 J.A. Fernández, J.R. Aboal, C. Real, A. Carballeira A new moss biomonitoring method for detecting sources of small scale pollution Atmos. Environ., 41 (10) (2007), pp. 2098-2110spa
dcterms.referencesFreije, 2015 A.M. Freije Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), pp. 90-100spa
dcterms.referencesGarcía-Florentino et al., 2020 C. García-Florentino, M. Maguregui, C. Ciantelli, A. Sardella, A. Bonazza, I. Queralt, J.A. Carrero, C. Natali, H. Morillas, J.M. Madariaga, G. Arana Deciphering past and present atmospheric metal pollution of urban environments: the role of black crusts formed on historical constructions J. Clean. Prod., 243 (2020), pp. 1-11spa
dcterms.referencesGarcía-Florentino et al., 2018 C. García-Florentino, M. Maguregui, H. Morillas, I. Marcaida, I. Salcedo, J.M. Madariaga Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution Sci. Total Environ., 626 (2018), pp. 441-450spa
dcterms.referencesGaza and Kugara, 2018 T. Gaza, J. Kugara Study of heavy metal air pollution, using a moss (Grimmia dissimulate) biomonitoring technique Univ. J. Chem., 6 (2018), pp. 1-13spa
dcterms.referencesGerdol et al., 2014 R. Gerdol, R. Marchesini, P. Iacumin, L. Brancaleoni Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors Chemosphere, 108 (2014), pp. 388-395spa
dcterms.referencesGioda et al., 2004 A. Gioda, J.A. Sales, P. Cavalcanti, M.F. Maia, L.F. Maia, F.R. Aquino Neto Evaluation of air quality in Volta Redonda, the main metallurgical industrial city in Brazil J. Braz. Chem. Soc., 15 (2004), pp. 856-864spa
dcterms.referencesGradeff and Davison, 1989 P.S. Gradeff, J.F. Davison Rare Earth Compositions for Diesel Fuel Stabilization U.S. Patent No. 4836830A U.S. Patent and Trademark Office, Washington, DC (1989)spa
dcterms.referencesGrantz et al., 2003 D.A. Grantz, J.H.B. Garner, D.W. Johnson Ecological effects of particulate matter Environ. Int., 29 (2003), pp. 213-239spa
dcterms.referencesGreven, 1999 H.C. Greven Key to Grimmia, coscinodon and hydrogrimmia in Europe J. Bryolog., 21 (2) (1999), pp. 117-121spa
dcterms.referencesGrigoratos and Martini, 2015 T. Grigoratos, G. Martini Brake wear particle emissions: a review Environ. Sci. Pollut. Res., 22 (2015), pp. 2491-2504spa
dcterms.referencesGuzel et al., 2012 S. Guzel, L. Kiziler, B. Aydemir, B. Alici, S. Ataus, A. Aksu, H. Durak Association of Pb, Cd, and Se concentrations and oxidative damage-related markers in different grades of prostate carcinoma Biol. Trace Elem. Res., 145 (2012), pp. 23-32spa
dcterms.referencesHaikerwal et al., 2015 A. Haikerwal, F. Reisen, M.R. Sim, M.J. Abramson, C.P. Meyer, F.H. Johnston, M. Dennekamp Impact of smoke from prescribed burning: is it a public health concern? J. Air. Waste. Ma., 65 (2015), pp. 592-598spa
dcterms.referencesHarmens et al., 2013 H. Harmens, L. Foan, V. Simon, G. Mills Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review Environ. Pollut., 173 (2013), pp. 245-254spa
dcterms.referencesHarmens et al., 2010 H. Harmens, D.A. Norris, E. Steinnes, E. Kubin, J. Piispanen, R. Alber, L. De Temmerman Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe Environ. Pollut., 158 (2010), pp. 3144-3156spa
dcterms.referencesHartwig et al., 2002 A. Hartwig, M. Asmuss, H. Blessing, S. Hoffmann, G. Jahnke, S. Khandelwal, A. Bürkle Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability Food Chem. Toxicol., 40 (2002), pp. 1179-1184spa
dcterms.referencesHastings, 2002 R.I. Hastings Book review: a world synopsis of the genus Grimmia (musci, Grimmiaceae) Brittonia, 54 (1) (2002), pp. 61-62spa
dcterms.referencesHogg and Van Eeden, 2009 J.C. Hogg, S. Van Eeden Pulmonary and systemic response to atmospheric pollution Respirology, 14 (2009), pp. 336-346spa
dcterms.referencesHuang et al., 2016 C.L. Huang, L.J. Bao, P. Luo, Z.Y. Wang, S.M. Li, E.Y. Zeng Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals J. Hazard Mater., 317 (2016), pp. 449-456spa
dcterms.referencesS. Itahashi, K. Yamaji, S. Chatani, H. Hayami Refinement of modeled aqueous-phase sulfate production via the Fe- and Mn-catalyzed oxidation pathway Atmosphere, 9 (2018), pp. 1-17spa
dcterms.referencesJara-Marini et al., 2009 M.E. Jara-Marini, M.F. Soto-Jiménez, F. Páez-Osuna Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California Chemosphere, 77 (2009), pp. 1366-1373spa
dcterms.referencesJärup, 2003 L. Järup Hazards of heavy metal contamination Br. Med. Bull., 68 (2003), pp. 167-182spa
dcterms.referencesJorge et al., 2019 J.C.F. Jorge, I.S. Bott, L.F.G. Souza, M.C. Mendes, L.S. Araujo, G.M. Evans Mechanical and microstructural behavior of C-Mn steel weld deposits with varying titanium contents J. Mater. Res. Technol., 8 (2019), pp. 4659-4671spa
dcterms.referencesKaminsky et al., 2008 H.A. Kaminsky, T.H. Etsell, D.G. Ivey, O. Omotoso Characterization of heavy minerals in the Athabasca oil sands Miner. Eng., 21 (2008), pp. 264-271spa
dcterms.referencesKampa and Castanas, 2008 M. Kampa, E. Castanas Human health effects of air pollution Environ. Pollut., 151 (2008), pp. 362-367spa
dcterms.referencesKarri et al., 2016 V. Karri, M. Schuhmacher, V. Kumar Heavy metals (Pb, Cd, as and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain Environ. Toxicol. Pharmacol., 48 (2016), pp. 203-213spa
dcterms.referencesKelly and Fussell, 2012 F.J. Kelly, J.C. Fussell Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter Atmos. Environ., 60 (2012), pp. 504-526spa
dcterms.referencesKhan et al., 2012 M.F. Khan, K. Hirano, S. Masunaga Assessment of the sources of suspended particulate matter aerosol using US EPA PMF 3.0 Environ. Monit. Assess., 184 (2012), pp. 1063-1083spa
dcterms.referencesKrzyzanowski et al., 2014 M. Krzyzanowski, J.S. Apte, S.P. Bonjour, M. Brauer, A.J. Cohen, A.M. Prüss-Ustun Air pollution in the mega-cities Curr. Environ. Health Rep., 1 (2014), pp. 185-191spa
dcterms.referencesKumar et al., 2013 M. Kumar, H. Furumai, F. Kurisu, I. Kasuga Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting Geoderma, 211 (2013), pp. 8-17spa
dcterms.referencesKvande and Drabløs, 2014 H. Kvande, P.A. Drabløs The aluminum smelting process and innovative alternative technologies J. Occup. Environ. Med., 56 (2014), pp. 23-32spa
dcterms.referencesLelieveld et al., 2015 J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer The contribution of outdoor air pollution sources to premature mortality on a global scale Nature, 525 (2015), pp. 368-371spa
dcterms.referencesLi et al., 2013 H.Y. Li, J.Y. Duan, D.D. Wei Comparison on corrosion behavior of arc sprayed and zinc-rich coatings Surf. Coating. Technol., 235 (2013), pp. 259-266spa
dcterms.referencesLi et al., 2009 J. Li, Y. Lu, W. Yin, H. Gan, C. Zhang, X. Deng, J. Lian Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China Environ. Monit. Assess., 153 (2009), pp. 365-374spa
dcterms.referencesLi et al., 2013b P.H. Li, S.F. Kong, C.M. Geng, B. Han, B. Lu, R.F. Sun, Z.P. Bai Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places Aerosol Air Qual. Res., 13 (2013), pp. 255-265spa
dcterms.referencesLin, 2015 V.S. Lin Research highlights: natural passive samplers–plants as biomonitors Environ. Sci.: Processes Impacts, 17 (2015), pp. 1137-1140spa
dcterms.referencesLong, 2008 D.G. Long Grimmia actualizaciones Field Bryol, 95 (2008), pp. 16-20spa
dcterms.referencesMa et al., 2018 T. Ma, M. Liu, T. Huang, A. Yu Al2O3-doped ZnO coating of carbon nanotubes as cathode material for lithium-sulfur batteries J. Power Sources, 398 (2018), pp. 75-82spa
dcterms.referencesMacedo-Miranda et al., 2016 G. Macedo-Miranda, P. Avila-Pérez, P. Gil-Vargas, G. Zarazúa, J.C. Sánchez-Meza, C. Zepeda-Gómez, S. Tejeda Accumulation of heavy metals in mosses: a biomonitoring study SpringerPlus, 5 (2016), pp. 1-16spa
dcterms.referencesMadadzada et al., 2019 A.I. Madadzada, W.M. Badawy, S.R. Hajiyeva, Z.T. Veliyeva, O.B. Hajiyev, M.S. Shvetsova, M.V. Frontasyeva Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: baku-Azerbaijan Microchem. J., 147 (2019), pp. 605-614spa
dcterms.referencesMaier, 2010 E. Maier The genus Grimmia hedw. (Grimmiaceae, bryophyta): a morphological-anatomical study BOISSIERA, 63 (2010), pp. 6-377spa
dcterms.referencesMaricq, 2007 M.M. Maricq Chemical characterization of particulate emissions from diesel engines: a review J. Aerosol Sci., 38 (2007), pp. 1079-1118spa
dcterms.referencesMaxhuni et al., 2016 A. Maxhuni, P. Lazo, S. Kane, F. Qarri, E. Marku, H. Harmens First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring Environ. Sci. Pollut. Res., 23 (2016), pp. 744-755spa
dcterms.referencesMazzoni et al., 2012 A.C. Mazzoni, R. Lanzer, J. Bordin, A. Schäfer, R. Wasum Mosses as indicators of atmospheric metal deposition in an industrial area of southern Brazil Acta Bot. Bras., 26 (3) (2012), pp. 553-558spa
dcterms.referencesMarkert and Weckert, 1993 B. Markert, V. Weckert Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses Toxicol. Environ. Chem., 40 (1993), pp. 43-56spa
dcterms.referencesMico et al., 2015 S. Mico, E. Tsaousi, A. Deda, P. Pomonis Characterization of airborne particles and source identification using SEM/EDS Eur. Chem. Bull., 4 (2015), pp. 224-229spa
dcterms.referencesMohapatra and Biswal, 2014 K. Mohapatra, S.K. Biswal Effect of particulate matter (PM) on plants, climate, ecosystem and human health Int. J. Adv. Technol. Eng. Sci., 2 (2014), pp. 118-129spa
dcterms.referencesMontilla et al., 2002 F. Montilla, E. Morallon, J.L. Vázquez, J. Alcañiz-Monge, D. Cazorla-Amorós, A. Linares-Solano Carbon–ceramic composites from coal tar pitch and clays: application as electrocatalyst support Carbon, 40 (2002), pp. 2193-2200spa
dcterms.referencesMorillas et al., 2016 H. Morillas, M. Maguregui, C. García-Florentino, J.A. Carrero, I. Salcedo, J.M. Madariaga The cauliflower-like black crusts on sandstones: a natural passive sampler to evaluate the surrounding environmental pollution Environ. Res., 147 (2016), pp. 218-232spa
dcterms.referencesMorillas et al., 2018 H. Morillas, I. Marcaida, C. García-Florentino, M. Maguregui, G. Arana, J.M. Madariaga Micro-Raman and SEM-EDS analyses to evaluate the nature of salt clusters present in secondary marine aerosol Sci. Total Environ., 615 (2018), pp. 691-697spa
dcterms.referencesMorillas et al., 2019 H. Morillas, I. Marcaida, M. Maguregui, S. Upasen, E. Gallego-Cartagena, J.M. Madariaga Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination J. Clean. Prod., 226 (2019), pp. 369-378spa
dcterms.referencesMu et al., 2012 L. Mu, L. Peng, X. Liu, H. Bai, C. Song, Y. Wang, Z. Li Emission characteristics of heavy metals and their behavior during coking processes Environ. Sci. Technol., 46 (2012), pp. 6425-6430spa
dcterms.referencesNatali et al., 2016 M. Natali, A. Zanella, A. Rankovic, D. Banas, C. Cantaluppi, L. Abbadie, J.C. Lata Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses Environ. Sci. Pollut. Res., 23 (23) (2016), pp. 23496-23510spa
dcterms.referencesNiemelä et al., 2007 M. Niemelä, J. Piispanen, J. Poikolainen, P. Perämäki Preliminary study of the use of terrestrial moss (Pleurozium schreberi) for biomonitoring traffic-related Pt and Rh deposition Arch. Environ. Contam. Toxicol., 52 (3) (2007), pp. 347-354spa
dcterms.referencesNriagu, 1990 J.O. Nriagu Global metal pollution: poisoning the biosphere? Environment, 32 (1990), pp. 7-33spa
dcterms.referencesOgunkunle and Fatoba, 2013 C.O. Ogunkunle, P.O. Fatoba Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria Pol. J. Environ. Stud., 22 (2013), pp. 487-493spa
dcterms.referencesOgunkunle et al., 2016 C.O. Ogunkunle, A.M. Ziyath, S.S. Rufai, P.O. Fatoba Surrogate approach to determine heavy metal loads in a moss species–Barbula lambaranensis J. King Saud Univ. Sci., 28 (2016), pp. 193-197spa
dcterms.referencesOnianwa, 2001 P.C. Onianwa Monitoring atmospheric metal pollution: a review of the use of mosses as indicators Environ. Monit. Assess., 71 (2001), pp. 13-50spa
dcterms.referencesÖtvös et al., 2003 E. Ötvös, T. Pázmándi, Z. Tuba First national survey of atmospheric heavy metal deposition in Hungary by the analysis of mosses Sci. Total Environ., 309 (2003), pp. 151-160spa
dcterms.referencesOwoade et al., 2015 K.O. Owoade, P.K. Hopke, F.S. Olise, L.T. Ogundele, O.G. Fawole, B.H. Olaniyi, M.I. Bashiru Chemical compositions and source identification of particulate matter (PM2. 5 and PM2. 5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria Atmos. Pollut. Res., 6 (2015), pp. 107-119spa
dcterms.referencesPandey and Madhuri, 2014 G. Pandey, S. Madhuri Heavy metals causing toxicity in animals and fishes Res. J. Anim., Vet. Fish. Sci., 2 (2014), pp. 17-23spa
dcterms.referencesPata et al., 2009 I.M.C. Pata, S.M. Pata, M. Macoveanu Passive biomonitoring of atmospheric pollution with heavy metals using native epigeic moss Environ Engine.Manag. J., 8 (2009), pp. 10-25spa
dcterms.referencesPeiro et al., 2011 L.T. Peiro, G.V. Méndez, R.U. Ayres Rare and critical metals as by-products and the implications for future supply Faculty & Research. INSEAD Report, Fontainebleau, France (2011), pp. 28-30spa
dcterms.referencesPereira et al., 2010 J.S. Pereira, D.P. Moraes, F.G. Antes, L.O. Diehl, M.F. Santos, R.C. Guimarães, É.M. Flores Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion Microchem. J., 96 (2010), pp. 4-11spa
dcterms.referencesQing et al., 2015 X. Qing, Z. Yutong, L. Shenggao Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China Ecotoxicol. Environ. Saf., 120 (2015), pp. 377-385spa
dcterms.referencesQuadros and Marr, 2010 M.E. Quadros, L.C. Marr Environmental and human health risks of aerosolized silver nanoparticles J. Air Waste Manag. Assoc., 60 (2010), pp. 770-781spa
dcterms.referencesQuan et al., 2014 S.X. Quan, B. Yan, C. Lei, F. Yang, N. Li, X.M. Xiao, J.M. Fu Distribution of heavy metal pollution in sediments from an acid leaching site of e-waste Sci. Total Environ., 499 (2014), pp. 349-355spa
dcterms.referencesuerol et al., 2007 X. Querol, M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, P. Salvador Source origin of trace elements in PM from regional background, urban and industrial sites of Spain Atmos. Environ., 41 (2007), pp. 7219-7231spa
dcterms.referencesRachwał et al., 2015 M. Rachwał, T. Magiera, M. Wawer Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons Chemosphere, 138 (2015), pp. 863-873spa
dcterms.referencesRadwan et al., 2019 M.A. Radwan, K.S. El-Gendy, A.F. Gad, A.E. Khamis, E.H. Eshra Responses of oxidative stress, genotoxicity and immunotoxicity as biomarkers in Theba pisana snails dietary exposed to silver nanoparticles Chem. Ecol., 35 (2019), pp. 613-630spa
dcterms.referencesS. Rams, R.M. Ros, M.J. Cano, J. Guerra Checklist de los briófitos de Sierra Nevada (Andalucía, España) Bol. Soc. Española Brio., 18 (19) (2001), pp. 137-164spa
dcterms.referencesReddy et al., 2005 M.S. Reddy, S. Basha, H.V. Joshi, B. Jha Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion J. Hazard Mater., 123 (2005), pp. 242-249spa
dcterms.referencesRudnick and Gao, 2003 R. Rudnick, S. Gao Composition of the continental crust R.L. Rudnick (Ed.), Treatise on Geochemistry, vol. 3, Elsevier Pergamon, Oxford (2003), pp. 1-7spa
dcterms.referencesSalo et al., 2012 H. Salo, M.S. Bućko, E. Vaahtovuo, J. Limo, J. Mäkinen, L.J. Pesonen Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens J. Geochem. Explor., 115 (2012), pp. 69-81spa
dcterms.referencesSarvi et al., 2009 A. Sarvi, P. Kilpinen, R. Zevenhoven Emissions from large-scale medium-speed diesel engines: 3. Influence of direct water injection and common rail Fuel Process. Technol., 90 (2009), pp. 222-231spa
dcterms.referencesSchröder et al., 2010 W. Schröder, M. Holy, R. Pesch, H. Harmens, I. Ilyin, E. Steinnes, M. Dam Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J. Soils Sediments, 10 (2010), pp. 1572-1584spa
dcterms.referencesSérgio et al., 2007 C. Sérgio, M. Brugués, R.M. Cros, C. Casas, C. Garcia The 2006 red list and an updated checklist of bryophytes of the iberian peninsula (Portugal, Spain and Andorra) Lindbergia, 31 (2007), pp. 109-125spa
dcterms.referencesShahid et al., 2014 M. Shahid, B. Pourrut, C. Dumat, M. Nadeem, M. Aslam, E. Pinelli Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants Rev. Environ. Contam. Toxicol., 232 (2014), pp. 1-44spa
dcterms.referencesSharma and Dietz, 2009 S.S. Sharma, K.J. Dietz The relationship between metal toxicity and cellular redox imbalance Trends Plant Sci., 14 (2009), pp. 43-50spa
dcterms.referencesSoudagar et al., 2018 M.E.M. Soudagar, N.N. Nik-Ghazali, M.A. Kalam, I.A. Badruddin, N.R. Banapurmath, N. Akram The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics Energy Convers. Manag., 178 (2018), pp. 146-177spa
dcterms.referencesSrivastava et al., 2009 A. Srivastava, V.K. Jain, A. Srivastava SEM-EDX analysis of various sizes aerosols in Delhi India Environ. Monit. Assess., 150 (2009), pp. 405-416spa
dcterms.referencesStaples et al., 2004 G.W. Staples, C.T. Imada, W.J. Hoe, C.W. Smith A revised checklist of Hawaiian mosses Tropical bryology (2004), pp. 35-68spa
dcterms.referencesSteinnes, 1995 E. Steinnes A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals Sci. Total Environ., 160 (1995), pp. 243-249spa
dcterms.referencesSternbeck et al., 2002 J. Sternbeck, Å. Sjödin, K. Andréasson Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies Atmos. Environ., 36 (2002), pp. 4735-4744spa
dcterms.referencesStreiff, 2005 A. Streiff Morphological study of the genus Grimmia hedw. (Grimmiaceae, bryopsida) J. Hattori Bot. Lab., 97 (2005), pp. 317-338spa
dcterms.referencesSun et al., 2017 F. Sun, D.A.I. Yun, X. Yu Air pollution, food production and food security: a review from the perspective of food system J. Integr. Agric., 16 (2017), pp. 2945-2962spa
dcterms.referencesSun et al., 2017b Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Zhang Spent lead-acid battery recycling in China–A review and sustainable analyses on mass flow of lead Waste Manag., 64 (2017), pp. 190-201spa
dcterms.referencesSzynkowska et al., 2018 M.I. Szynkowska, A. Pawlaczyk, E. Maćkiewicz Bioaccumulation and biomagnification of trace elements in the environment K. Chojnacka, A. Saeid (Eds.), Recent Advances in Trace Elements (2018), pp. 249-251 (Chapter 13). Wroclaw, Polandspa
dcterms.referencesTamás et al., 2014 M. Tamás, S. Sharma, S. Ibstedt, T. Jacobson, P. Christen Heavy metals and metalloids as a cause for protein misfolding and aggregation Biomolecules, 4 (2014), pp. 252-267spa
dcterms.referencesTan et al., 2006 M.G. Tan, G.L. Zhang, X.L. Li, Y.X. Zhang, W.S. Yue, J.M. Chen, Z.C. Shan Comprehensive study of lead pollution in Shanghai by multiple techniques Anal. Chem., 78 (2006), pp. 8044-8050spa
dcterms.referencesTchounwou et al., 2012 P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton Heavy metal toxicity and the environment A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol. 101, Springer, Basel (2012)spa
dcterms.referencesUdayakumar et al., 2014 P. Udayakumar, J.J. Jose, K.A. Krishnan, C.R. Kumar, M.N. Manju, P.M. Salas Heavy metal accumulation in the surficial sediments along southwest coast of India Environ. Earth Sci., 72 (2014), pp. 1887-1900spa
dcterms.referencesVan Eeden and Sin, 2013 S.F. Van Eeden, D.D. Sin Oxidative stress in chronic obstructive pulmonary disease: a lung and systemic process Canc. Res. J., 20 (2013), pp. 27-29spa
dcterms.referencesVarela et al., 2015 Z. Varela, J.A. Fernández, C. Real, A. Carballeira, J.R. Aboal Influence of the physicochemical characteristics of pollutants on their uptake in moss Atmos. Environ., 102 (2015), pp. 130-135spa
dcterms.referencesVianna et al., 2011 N.A. Vianna, D. Gonçalves, F. Brandão, R.P. de Barros, G.M. Amado Filho, R.O. Meire, L.R. Andrade Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor Environ. Sci. Pollut. Res., 18 (2011), pp. 416-427spa
dcterms.referencesWang et al., 2019 D. Wang, L. Jin, Y. Li, B. Wei, D. Yao, T. Wang, H. Hu Integrated process of coal tar upgrading and in-situ reduction of Fe2O3 Fuel Process. Technol., 191 (2019), pp. 20-28spa
dcterms.referencesQ. Wang, W. Shen, Z. Ma Estimation of mercury emission from coal combustion in China Environ. Sci. Technol., 34 (2000), pp. 2711-2713spa
dcterms.referencesWang et al., 2013 S.L. Wang, X.R. Xu, Y.X. Sun, J.L. Liu, H.B. Li Heavy metal pollution in coastal areas of South China: a review Mar. Pollut. Bull., 76 (2013), pp. 7-15spa
dcterms.referencesWannaz et al., 2013 E.D. Wannaz, G.A. Abril, J.H. Rodriguez, M.L. Pignata Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris J. Environ. Chem. Eng., 1 (2013), pp. 1028-1035spa
dcterms.referencesWorld Health Organization, 2016 World Health Organization Ambient Air Pollution: a Global Assessment of Exposure and Burden of Disease World Health Organization (2016)spa
dcterms.referencesWu et al., 2012 Q.R. Wu, S.X. Wang, L. Zhang, J.X. Song, H. Yang, Y. Meng Update of mercury emissions from China’s primary zinc, lead and copper smelters, 2000–2010 Atmos. Chem. Phys., 12 (2012), pp. 11153-11163spa
dcterms.referencesXiao et al., 2010 Y. Xiao, H. Jalkanen, Y. Yang, C.R. Mambote, R. Boom Ferrovanadium production from petroleum fly ash and BOF flue dust Miner. Eng., 23 (2010), pp. 1155-1157spa
dcterms.referencesM. Xu, R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng Status of trace element emission in a coal combustion process: a review Fuel Process. Technol., 85 (2004), pp. 215-237spa
dcterms.referencesZechmeister et al., 2004 H.G. Zechmeister, A. Riss, A. Hanus-Illnar Biomonitoring of atmospheric heavy metal deposition by mosses in the vicinity of industrial sites J. Atmos. Chem., 49 (1–3) (2004), pp. 461-477spa
dcterms.referencesZeng et al., 2016 X. Zeng, X. Xu, X. Zheng, T. Reponen, A. Chen, X. Huo Heavy metals in PM2.5 and in blood, and children’s respiratory symptoms and asthma from an e-waste recycling area Environ. Pollut., 210 (2016), pp. 346-353spa
dcterms.referencesZhai et al., 2014 Y. Zhai, X. Liu, H. Chen, B. Xu, L. Zhu, C. Li, G. Zeng Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha Sci. Total Environ., 493 (2014), pp. 109-115spa
dcterms.referencesZhang and Batterman, 2013 K. Zhang, S. Batterman Air pollution and health risks due to vehicle traffic Sci. Total Environ., 450 (2013), pp. 307-316spa
dcterms.referencesZhang et al., 2018 Y. Zhang, A.J. Davenport, B. Burke, N. Vyas, O. Addison Effect of Zr addition on the corrosion of Ti in acidic and reactive oxygen species (ROS)-containing environments ACS Biomater. Sci. Eng., 4 (2018), pp. 1103-1111spa
dcterms.referencesZhong et al., 2019 Q. Zhong, J. Du, V. Puigcorbé, J. Wang, Q. Wang, B. Deng, F. Zhang Accumulation of natural and anthropogenic radionuclides in body profiles of Bryidae, a subgroup of mosses Environ. Sci. Pollut. Res., 26 (27) (2019), pp. 27872-27887spa
dcterms.referencesZhou et al., 2017 X. Zhou, Q. Chen, C. Liu, Y. Fang Using moss to assess airborne heavy metal pollution in Taizhou, China Int. J. Environ. Res. Publ. Health, 14 (2017), pp. 1-13spa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.source.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090332713&doi=10.1016%2fj.chemosphere.2020.128190&partnerID=40&md5=c33bb39aa8f04ad8a31ae13981849158spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.date.embargoEnd2023-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International