Show simple item record

dc.creatorBALBIS MOREJON, MILEN
dc.creatorRey Hernandez, Javier M
dc.creatorAmaris-Castilla, Carlos
dc.creatorvelasco, eloy
dc.creatorSan José, Julio
dc.creatorRey-Martínez, Francisco Javier
dc.date.accessioned2020-11-13T19:54:50Z
dc.date.available2020-11-13T19:54:50Z
dc.date.issued2020-10-26
dc.identifier.issn2071-1050
dc.identifier.urihttps://hdl.handle.net/11323/7311
dc.description.abstractThis study presents the evaluation of the performance and acceptability of thermal comfort by students in the classrooms of a university building with minisplit-type air-conditioning systems, in a tropical climate. To carry out the study, temperature and humidity measurements were recorded, both outside and inside the selected classrooms, while the students were asked to complete thermal surveys on site. The survey model is based on the template proposed by Fanger and it was applied to a total number of 584 students. In each classroom, the Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) were estimated according to Fanger’s methodology, as well as the Thermal Sensation Vote (TSV) and the Actual Percentage Dissatisfied (APD), which were obtained from the measurements and the surveys. The results of this study showed that the PMV values, although they may vary with the insulation of the clothing, do not affect the TSV. Furthermore, comparing PMV vs. TSV scores, a 2 ◦C to 3 ◦C difference in operating temperature was found, whereby the thermal sensitivity for TSV was colder, so it could be assumed that the PMV model overestimates the thermal sensitivity of students in low-temperature conditions. In addition, an acceptability by 90% with thermal preferences between 23 ◦C and 24 ◦C were also found. These results indicate that it is possible to increase the temperature set point in minisplit-type air-conditioning system from 4 ◦C to 7 ◦C with respect to the currently set temperatures, without affecting the acceptability of the thermal environment to the students in the building.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSustainabilityspa
dc.subjectIndoor environmental quality (IEQ)spa
dc.subjectThermal comfort methodsspa
dc.subjectThermal acceptabilityspa
dc.subjectTropical climatespa
dc.titleExperimental study and analysis of thermal comfort in a university campus building in tropical climatespa
dc.typearticlespa
dcterms.references1. Jiang, J.; Wang, D.; Liu, Y.; Xu, Y.; Liu, J. A study on pupils’ learning performance and thermal comfort of primary schools in China. Build. Environ. 2018, 134, 102–113. [CrossRef]spa
dcterms.references2. Corgnati, S.P.; Filippi, M.; Viazzo, S. Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort. Build. Environ. 2007, 42, 951–959. [CrossRef]spa
dcterms.references3. Mishra, A.K.; Derks, M.T.H.; Kooi, L.; Loomans, M.G.L.C.; Kort, H.S.M. Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Build. Environ. 2017, 125, 464–474. [CrossRef]spa
dcterms.references4. Jing, S.; Lei, Y.; Wang, H.; Song, C.; Yan, X. Thermal comfort and energy-saving potential in university classrooms during the heating season. Energy Build. 2019, 202, 109390. [CrossRef]spa
dcterms.references5. ANSI/ASHRAE. Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2017.spa
dcterms.references6. Madrigal, J.A.; Cabello, J.J.; Sagastume, A.; Balbis, M. Evaluación de la Climatización en Locales Comerciales, Integrando Técnicas de Termografía, Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings, Integrating Thermography Techniques, Simulation and Modeling. Inf. Tecnol. 2018, 29, 179–188. [CrossRef]spa
dcterms.references7. Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [CrossRef]spa
dcterms.references8. Mondelo, P.R.; Torada, E.G.; Vilella, E.C.; Úriz, S.C.; Lacambra, E.B. ERGONOMIA 2—Confort y Estrés Térmico, 3rd ed.; Alfaomega: Madrid, España; Edicions UPC: Barcelona, España, 2001.spa
dcterms.references9. Jara, P. Thermal comfort and its importance for the architectural design and environmental quality of indoors space. Arquit. Cult. 2015, 7, 106–121.spa
dcterms.references10. Vera, S.; Ordenes, M. Thermal and Energy Performance Evaluation of a Social Housing in Chile, Using a Building Energy Simulation Software. Rev. Ing. Constr. 2011, 17, 133–142.spa
dcterms.references11. Djamila, H.; Chu, C.M.; Kumaresan, S. Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Build. Environ. 2013, 62, 133–142. [CrossRef]spa
dcterms.references12. Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renew. Sustain. Energy Rev. 2016, 53, 1508–1519. [CrossRef]spa
dcterms.references13. Castilla, M.M.; Álvarez, J.D.; Berenguel, M.; Pérez, M.; Rodríguez, F.; Guzmán, J.L. Técnicas de Control del Confort en Edificios. Rev. Iberoam. Autom. Inform. Ind. 2010, 7, 5–24. [CrossRef]spa
dcterms.references14. van Hoof, J.; Schellen, L.; Soebarto, V.; Wong, J.K.W.; Kazak, J.K. Ten questions concerning thermal comfort and ageing. Build. Environ. 2017, 120, 123–133. [CrossRef]spa
dcterms.references15. Fabbri, K. Indoor thermal comfort perception: A questionnaire approach focusing on children, In Indoor Thermal Comfort Perception A Quest. Approach Focus. Child.; Springer: Cham, Switzerland, 2015; p. 302. [CrossRef]spa
dcterms.references16. Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [CrossRef]spa
dcterms.references17. Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort d An overview. Build. Environ. 2013, 64, 94–106. [CrossRef]spa
dcterms.references18. ISO 7730:2005. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005.spa
dcterms.references19. EN 16798-1:2019. Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization-CNE: Geneva, Switzerland, 2019.spa
dcterms.references20. ICONTEC. Thermal Environmental Conditions for Human Occupancy; NTC 5316; ICONTEC: Bogota, Colombia, 2004.spa
dcterms.references21. Aghniaey, S.; Lawrence, T.M.; Sharpton, T.N.; Douglass, S.P.; Oliver, T.; Sutter, M. Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response. Build. Environ. 2019, 148, 488–497. [CrossRef]spa
dcterms.references22. Natarajan, S.; Rodriguez, J.; Vellei, M. A field study of indoor thermal comfort in the subtropical highland climate of Bogota, Colombia. J. Build. Eng. 2015, 4, 237–246. [CrossRef]spa
dcterms.references23. Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [CrossRef]spa
dcterms.references24. Ealiwa, M.R.S.M.A.; Taki, A.H.; Howarth, A.T. An investigation into thermal comfort in the summer season of Ghadames, Libya. Build. Environ. 2001, 36, 231–237. [CrossRef]spa
dcterms.references25. Koelblen, B.; Psikuta, A.; Bogdan, A.; Annaheim, S.; Rossi, R.M. Thermal sensation models: Validation and sensitivity towards thermo-physiological parameters. Build. Environ. 2018, 130, 200–211. [CrossRef]spa
dcterms.references26. Hwang, R.L.; Lin, T.P.; Kuo, N.J. Field experiments on thermal comfort in campus classrooms in Taiwan. Energy Build. 2006, 38, 53–62. [CrossRef]spa
dcterms.references27. Buonocore, C.; de Vecchi, R.; Scalco, V.; Lamberts, R. Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy Build. 2020, 211, 109783. [CrossRef]spa
dcterms.references28. Kuchen, E.; Fisch, M.N.; Gonzalo, G.E.; Nozica, G.N. Predicción del indice de disconformidad térmica en espacios de oficina considerando el diagnóstico de usuarios. Av. Energías Renov. Medio Ambient. 2009, 13, 15–22.spa
dcterms.references29. Cruz, E.M.G.; Claret, G.; Morales, B. About thermal comfort: Neutral temperatures in the humid tropic. Rev. Investig. Científica Arquit. J. Sci. Res. 2009, 33–38. Available online: http://www.redalyc.org/pdf/948/94814777005.pdf (accessed on 7 March 2020).spa
dcterms.references30. Batlle, E.A.O.; Palacio, J.C.E.; Lora, E.E.S.; Reyes, A.M.M.; Moreno, M.M.; Morejón, M.B. A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). J. Clean. Prod. 2020, 244, 118551. [CrossRef]spa
dcterms.references31. Valderrama, C.; Cohen, A.; Lagiere, P.; Puiggali, J.R. Análisis del comportamiento energético en un conjunto de edifi cios multifuncionales. Caso de estudio Campus Universitario. Rev. Constr. 2011, 10, 26–39.spa
dcterms.references32. Campos, A. Confort Térmico Y Eficiencia Energética En Un Centro Docente. 2017. Available online: https://riunet.upv.es/handle/10251/86736?show=full (accessed on 7 March 2020).spa
dcterms.references33. Sánchez-García, D.; Sánchez-Guevara, C.; Rubio, C. El enfoque adaptativo del confort térmico en Sevilla. Master’s Thesis, Universidad Politécnica de Madrid, Anales, España, 2015. Volume 2. p. 110.spa
dcterms.references34. Lin, Z.; Deng, S. A study on the thermal comfort in sleeping environments in the subtropics-Developing a thermal comfort model for sleeping environments. Build. Environ. 2008, 43, 70–81. [CrossRef]spa
dcterms.references35. Guerra-Santin, O.; Tweed, C.A. In-use monitoring of buildings: An overview of data collection methods. Energy Build. 2015, 93, 189–207. [CrossRef]spa
dcterms.references36. Stevenson, F.H.B.R. Developing occupancy feedback from a prototype to improve housing production. Build. Res. Inf. 2010, 38, 549–563. [CrossRef]spa
dcterms.references37. Ekici, C. A review of thermal comfort and method of using Fanger’s PMV equation. In Proceedings of the 5th International Symposium on Measurement, Analysis and Modelling of Human Functions, ISHF 2013, Vancouver, BC, Canada, 27–29 June 2013; pp. 61–64.spa
dcterms.references38. Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [CrossRef]spa
dcterms.references39. Doherty, T.J.; Arens, E. Evaluation of the physiological bases of thermal comfort models. ASHRAE Trans. 1988, 94, 1371–1385. Available online: www.ashrae.org (accessed on 7 March 2020).spa
dcterms.references40. Balbis-Morejon1, M.; Noya-Sambrano1, A. Thermal comfort evaluation in an educational building with air conditioning located in the warm tropical climate of Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 012030. [CrossRef]spa
dcterms.references41. Arballo, B.; Kuchen, E.; Scientific, N.; Naranjo, Y.A. Evaluación de modelos de confort térmico para interiores. In Proceedings of the VIII Congreso Regional de Tecnología de la Arquitectura—CRETA, Desarrollo Tecnológico Regional Sustentable, San Juan, Argentina, 19–21 October 2016; p. 10.spa
dcterms.references42. Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016. [CrossRef]spa
dcterms.references43. ASHRAE. STANDARD 55 USER’ S MANUAL; ASHRAE: Atlanta, GA, USA, 2016.spa
dcterms.references44. ANSI/ASHRAE. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2013.spa
dcterms.references45. Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [CrossRef]spa
dcterms.references46. CBE Center for the Built Environment. CBE Thermal Comfort Tools. 2020. Available online: https: //comfort.cbe.berkeley.edu (accessed on 7 March 2020).spa
dcterms.references47. Mui, K.W.; Tsang, T.W.; Wong, L.T. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2020, 29, 101117. [CrossRef]spa
dcterms.references48. Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [CrossRef]spa
dc.source.urlhttps://www.mdpi.com/2071-1050/12/21/8886spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doiDOI: 10.3390/su12218886
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal