Mostrar el registro sencillo del ítem

dc.contributor.authorCárdenas R, César A.spa
dc.contributor.authorCollazos Morales, Carlos Andrésspa
dc.contributor.authorAmaya, Juan Carlosspa
dc.contributor.authorCaviativa Castro, Yaneth Patriciaspa
dc.contributor.authorDe-la-Hoz-Franco, Emirospa
dc.date.accessioned2020-11-17T19:07:55Z
dc.date.available2020-11-17T19:07:55Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7317spa
dc.description.abstractWhen operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTOL aircraft. This flowfield during very low speed or hover flight operations is very complex and time dependent. An important number of experimental researches and simulations have been carried out to be able to understand much better these flows related with powered lift vehicles. Computational Fluid Dynamics (CFD) approach will be used in this paper work for simulation purposes of a single and twin impinging jet through and without crossflow.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceCommunications in Computer and Information Sciencespa
dc.subjectVSTOLspa
dc.subjectImpingement jetspa
dc.subjectCFDspa
dc.subjectCrossflowspa
dc.titleSimulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)spa
dc.typeArtículo de revistaspa
dc.source.urlhttps://link.springer.com/chapter/10.1007%2F978-3-030-61834-6_29spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-3-030-61834-6_29spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAbdel-Fattah, A.: Numerical and experimental study of turbulent im- pinging twin-jet flow. Exp. Therm. Fluid Sci. 31(8), 1061–1072 (2007)spa
dc.relation.referencesAlvi, F., Iyer, K.G., Ladd, J.: Properties of supersonic impinging jets. In: November 1999spa
dc.relation.referencesBehrouzi, P., McGuirk, J.J.: Experimental data for CFD validation of the intake ingestion process in STOVL aircraft. Flow Turbul. Combust. 64(4), 233–251 (2000)spa
dc.relation.referencesBertelsen, W.D., Bertelsen, W.R.: History of deflected slip-stream VTOL aircraft. In: American Helicopter Society 61st Annual Forum. Citeseer (2005)spa
dc.relation.referencesCollazos, C., et al.: State estimation of a dehydration process by interval analysis. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 66–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_6spa
dc.relation.referencesCollazos, C.A., et al.: Detection of faults in an osmotic dehydration process through state estimation and interval analysis. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 699–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_56spa
dc.relation.referencesGibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86(3), 491–511 (1978)spa
dc.relation.referencesGoldstein, R.J., Behbahani, A.I.: Impingement of a circular jet with and without cross flow. Int. J. Heat Mass Transf. 25(9), 1377–1382 (1982)spa
dc.relation.referencesCárdenas R., C.A., et al.: Correction to: quadrotor modeling and a PID control approach. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. C1–C1. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_26spa
dc.relation.referencesJiménez-Cabas, J., et al.: Robust control of an evaporator through algebraic riccati equations and DK iteration. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 731–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_58spa
dc.relation.referencesPatel, K., Shah, H., Dcosta, M., Shastri, D.: Evaluating neurosky’s single-channel EEG sensor for drowsiness detection. In: Stephanidis, C. (ed.) HCI 2017. CCIS, vol. 713, pp. 243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58750-9_35spa
dc.relation.referencesKuhn, R.E.: Review of Basic Principles of V/STOL Aerodynamics. National Aeronautics and Space Administration, Washington, D.C. (1960)spa
dc.relation.referencesLeschziner, M.A., Ince, N.Z.: Computational modelling of three-dimensional impinging jets with and without cross-flow using second-moment closure. Comput. Fluids 24(7), 811–832 (1995)spa
dc.relation.referencesLi, Q., Page, G.J., McGuirk, J.J.: Large-eddy simulation of twin impinging jets in cross-flow. Aeronaut. J. 111(1117), 195–206 (2007)spa
dc.relation.referencesMcGuirk, J., et al.: Simulation of an impinging jet in a cross flow using an LES method. In: 2002 Biennial International Powered Lift Conference and Exhibit, p. 5959spa
dc.relation.referencesPage, G.J., McGuirk, J.J.: Large eddy simulation of a complete Harrier aircraft in ground effect. Aeronaut. J. 113(1140), 99–106 (2009)spa
dc.relation.referencesRadhouane, A., Mahjoub Saïd, N., Mhiri, H., Bournot, H., Le Palec, G.: Dynamics of the flowfield generated by the interaction of twin inclined jets of variable temperatures with an oncoming crossflow. Heat and Mass Transf. 50(2), 253–274 (2013). https://doi.org/10.1007/s00231-013-1241-9spa
dc.relation.referencesRichardson, G.A., Dawes, W.N., Savill, A.M.: An unsteady, moving mesh CFD simulation for Harrier hot-gas ingestion control analysis. Aeronaut. J. 111(1117), 133–144 (2007)spa
dc.relation.referencesRizk, M.H., Menon, S.: Large-eddy simulations of axisymmetric excitation effects on a row of impinging jets. Phys. Fluids 31(7), 1892–1903 (1988)spa
dc.relation.referencesRizk, M.H., Menon, S.: Large-eddy simulations of excitation effects on a VTOL upwash fountain. Phys. Fluids Fluid Dyn. 1(4), 732–740 (1989)spa
dc.relation.referencesWorth, N.A., Yang, Z.: Simulation of an impinging jet in a cross flow using a reynolds stress transport model. Int. J. Numer. Methods Fuids 52(2), 199–211 (2006)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International