Show simple item record

dc.creatorNoriega Angarita, Eliana Maria
dc.date.accessioned2018-11-02T20:56:24Z
dc.date.available2018-11-02T20:56:24Z
dc.date.issued2018-04-01
dc.identifier.urihttp://hdl.handle.net/11323/73
dc.descriptionMaestría en Ingenieríaeng
dc.description.abstractThe objective of this research is to improve the energy performance in the electricity consumption for the battery charging process in a Colombian factory, considering energy planning strategies according to the procedure established by the standard ISO 50001. There were identified areas with its significant uses of energy consumptions, an energy review is carried out which starts with the application of work group techniques, measurements and an energy performance indicator is designed and implemented in order to systematically evaluate the efficiency in the battery charging process. Also, it was developed a statistical analysis used to identify parameters with a significant influence in the process, a group of actions are proposed and applied at the end of 2015. During the first semester of 2016 an evaluation is realized providing successful results with a total energy saving of 201.934 kWh (3.48%), equivalent to $81.783.675 COP.eng
dc.description.abstractLa presente investigación tiene como objetivo la mejora del desempeño energético en el consumo de electricidad para el proceso de formación de baterías de una fábrica en Colombia, mediante la planificación energética según el procedimiento establecido por la norma ISO 50001. En el trabajo se identifican las áreas de uso significativo de la energía eléctrica, se realiza una revisión energética que inicia con la aplicación de técnicas de trabajo en grupo, mediciones de campo y se diseña e implementa un indicador de desempeño energético que permite evaluar sistemáticamente la eficiencia en el proceso de formación de baterías. Al mismo se le realiza un análisis estadístico, se identifican los parámetros con influencia significativa y se proponen un grupo de acciones que comienzan a aplicarse a finales del 2015. Durante el primer semestre del 2016 se realiza una evaluación que brinda excelentes resultados con un ahorro de energía total de 201 934kWh (3,48 %), equivalente a 81 783 675 COP.
dc.language.isospaeng
dc.publisherUniversidad de la Costaeng
dc.rightsAtribución – No comercial – Compartir igualeng
dc.subjectPlanificación energéticaeng
dc.subjectFábrica de bateríaseng
dc.subjectAhorro de energíaeng
dc.subjectISO 50001eng
dc.subjectEnergy planning
dc.subjectBattery factory
dc.subjectEnergy savings
dc.titlePlanificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de bateríaseng
dc.typeThesiseng
dcterms.referencesAbdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. doi:10.1016/j.rser.2010.09.003spa
dcterms.referencesAlan P. Rossiter. (2015). Energy management and efficienty for the process industries.
dcterms.referencesALAVA INGENIEROS. (2011). Guía de termografía para mantenimiento predictivo. Retrieved from http://www.alava-ing.es/repositorio/6769/pdf/3505/2/guia-de-termografia-para-mantenimiento-predictivo.pdf
dcterms.referencesAvella Campos, J. C., Caicedo Prías, O. F., Oqueña Quispe, E. C., Medina Vidal, J. R., & Figueroa Lora, E. D. (2008). Modelo de gestión energética para el sector productivo nacional. Prospectiva, 6(30), 18–31. Retrieved from https://www.uac.edu.co/images/stories/publicaciones/revistas_cientificas/prospectiva/volumen-6-no-1/
dcterms.referencesAzenha, M., Faria, R., & Figueiras, H. (2011). Thermography as a technique for monitoring early age temperatures of hardening concrete. Construction and Building Materials, 25(11), 4232–4240. doi:10.1016/j.conbuildmat.2011.04.065
dcterms.referencesBunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6-7), 667–679. doi:10.1016/j.jclepro.2010.11.011
dcterms.referencesCabello Eras, J. J., Sagastume Gutiérrez, A., García Lorenzo, D., Cogollos Martínez, J. B., Hens, L., & Vandecasteele, C. (2015). Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba. Journal of Cleaner Production, 108(2015), 1–10. doi:10.1016/j.jclepro.2014.11.063
dcterms.referencesCabello, J., Sousa Santos, V., Sagastume Gutiérrez, A., Guerra Plasencia, M. Á., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803–812. doi:10.1016/j.jclepro.2016.07.192
dcterms.referencesCagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. doi:10.1016/j.jclepro.2014.06.057
dcterms.referencesCataliotti, A., Genduso, F., Raciti, A., Member, S., & Galluzzo, G. R. (2007). Generalized PWM – VSI Control Algorithm Based on a Universal Duty-Cycle Expression : Theoretical Analysis , Simulation Results , and Experimental Validations, 54(3), 1569–1580.
dcterms.referencesChan, Y., & Kantamaneni, R. (2015). Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. London: ICF Consulting.
dcterms.referencesChih-Chiang Hua, & Meng-Yu Lin. (2000). A study of charging control of lead-acid battery for electric vehicles. ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543), 1, 135–140. doi:10.1109/ISIE.2000.930500
dcterms.referencesChristoffersen, L. B., Larsen, A., & Togeby, M. (2006). Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516–526. doi:10.1016/j.jclepro.2005.03.017
dcterms.referencesClimaco-Pinto, R., Barros, A. S., Locquet, N., Schmidtke, L., & Rutledge, D. N. (2009). Improving the detection of significant factors using ANOVA-PCA by selective reduction of residual variability. Analytica Chimica Acta, 653(2), 131–142. doi:10.1016/j.aca.2009.09.016
dcterms.referencesColeman, M., Hurley, W. G., & Lee, C. K. (2008). An Improved Battery Characterization Method Using a Two-Pulse Load Test, 23(2), 708–713. doi:10.1109/TEC.2007.914329
dcterms.referencesDranezt. (n.d.). User ’ s Guide, (September 2006).
dcterms.referencesDuarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11
dcterms.referencesEnerSys. (2006). APPLICATION Genesis TM NP and NPX Series Genesis NP & NPX Series Application Manual.
dcterms.referencesEuropean Commission (EC). (2014). Communication from the commission to the European parliament and the council energy efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy. Brussels.
dcterms.referencesFawkes, S., Oung, K., & Thorpe, D. (2016). Best Practices and Case Studies for Industrial Energy Efficiency Improvement – An introduction for policy makers (Copenhagen). Copenhagen.
dcterms.referencesFluke. (2014). Nuevos productos de Fluke.
dcterms.referencesGarcía Samper, M. A., Guiliany, J. G., & Eras, J. C. (2017). Eficiencia En El Uso De Los Recursos Y Producción Más Limpia (Recp) Para La Competitividad Del Sector Hotelero. Revista de Gestão Social E Ambiental, 11(2), 18. doi:10.24857/rgsa.v11i2.1252
dcterms.referencesGarcía-León, R., Echavez Díaz, R., & Flórez Solano, E. (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGE CUC, 14(2), 9-18. https://doi.org/10.17981/ingecuc.14.2.2018.01
dcterms.referencesGiacone, E., & Mancò, S. (2012). Energy efficiency measurement in industrial processes. Energy, 38(1), 331–345. doi:10.1016/j.energy.2011.11.054
dcterms.referencesGielen, D., & Taylor, P. (2009). Indicators for industrial energy efficiency in India. Energy, 34(8), 962–969. doi:10.1016/j.energy.2008.11.008
dcterms.referencesGlowacz, A., & Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics and Technology, 81, 7–16. doi:10.1016/j.infrared.2016.12.003
dcterms.referencesHens, L., Block, C., Cabello-Eras, J. J., Sagastume-Gutierez, A., Garcia-Lorenzo, D., Chamorro, C., … Vandecasteele, C. (2018). On the evolution of “Cleaner Production” as a concept and a practice. Journal of Cleaner Production, 172, 3323–3333. doi:10.1016/j.jclepro.2017.11.082
dcterms.referencesHens, L., Cabello-Eras, J. J., Sagastume-Guti??rez, A., Garcia-Lorenzo, D., Cogollos-Martinez, J. B., & Vandecasteele, C. (2017). University???industry interaction on cleaner production. The case of the Cleaner Production Center at the University of Cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63–68. doi:10.1016/j.jclepro.2015.10.105
dcterms.referencesHou, S. J., Onishi, Y., Minami, S., Ikeda, H., Sugawara, M., & Kozawa, A. (2005). Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control. Journal of Asian Electric Vehicles, 3(1), 733–737. doi:10.4130/jaev.3.733
dcterms.referencesISO. (2011). Traducción oficial Official translation Traduction officielle ISO. Order A Journal On The Theory Of Ordered Sets And Its Applications, 2009, 58.
dcterms.referencesISO. (2014). ISO 50004: Energy management systems - Guidance for the implementation. maintenance an d improvement of an energy management system, 2014(50), 1–45.
dcterms.referencesJossen, A., Garche, J., & Sauer, D. U. (2004). Operation conditions of batteries in PV applications. Solar Energy, 76(6), 759–769. doi:10.1016/j.solener.2003.12.013
dcterms.referencesJung, J., Zhang, L., & Zhang, J. (2015). Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications. doi:https://doi.org/10.1201/b18665-7
dcterms.referencesJung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.
dcterms.referencesJung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.
dcterms.referencesKaygusuz, K. (2012). Energy for sustainable development: A case of developing countries. Renewable and Sustainable Energy Reviews, 16(2), 1116–1126. doi:10.1016/j.rser.2011.11.013
dcterms.referencesKiessling, R. (1992). Lead Acid Battery Formation Techniques. Shelton.
dcterms.referencesLaborda, A., Robinson, A., Wang, S., Zhang, Y., & Reed, P. (2018). Fatigue assessment of multilayer coatings using lock-in thermography. Materials and Design, 141, 361–373. doi:10.1016/j.matdes.2018.01.004
dcterms.referencesLin, B., Recke, B., Knudsen, J. K. H., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers and Chemical Engineering, 31(5-6), 419–425. doi:10.1016/j.compchemeng.2006.05.030
dcterms.referencesLuo, X., Lu, Z., & Xu, X. (2014). Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis. Reliability Engineering and System Safety, 130, 140–148. doi:10.1016/j.ress.2014.06.002
dcterms.referencesM. Nuñez, J. Correa, G. Herrera, P. Gómez, S. Morón & N. Fonseca “Study of Perceptions on Clean and SelfSustainable Energy”, IJMSOR, vol. 3, no. 1, pp. 11-15, 2018. https://doi.org/10.17981/ijmsor.03.01.02
dcterms.referencesMatson, N. E., & Piette, M. A. (2005). High Performance Commercial Building Systems: Review of California and National Benchmarking Methods. Working Draft. Berkeley.
dcterms.referencesMiloloza, I. (2013). Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia. Interdisciplinary Description of Complex Systems, 11(3), 318–333. doi:10.7906/indecs.11.3.3
dcterms.referencesMinipa. (n.d.). Digital Power Meter DIGITAL POWER METER Digital Power Meter, (Model 66202).
dcterms.referencesMorando, S., Jemei, S., Hissel, D., Gouriveau, R., & Zerhouni, N. (2017). ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network. Mathematics and Computers in Simulation, 131, 283–294. doi:10.1016/j.matcom.2015.06.009
dcterms.referencesNishimura, K., Takasaki, T., & Sakai, T. (2013). Introduction of large-sized nickel-metal hydride battery GIGACELL?? for industrial applications. Journal of Alloys and Compounds, 580(SUPPL1), 353–358. doi:10.1016/j.jallcom.2013.01.166
dcterms.referencesNuñez, M., Correa, J., Herrera, G., Gómez, P., Morón, S., & Fonseca, N. (2018). Estudio de percepción sobre energía limpia y auto sostenible. IJMSOR: International Journal of Management Science & Operation Research, 3(1), 11-15. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/89
dcterms.referencesOrdóñez, C. P. (2011). Estudio de baterías para vehículos eléctricos. Enterprise.Uc3M.Es, 1–105. Retrieved from http://enterprise.uc3m.es/redmine/files/101115153006_CV_MDdelamata.pdf\nhttp://e-archivo.uc3m.es/handle/10016/11805
dcterms.referencesOspino-Castro, A. (2010). Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico. INGECUC, 6(6), 0–8.
dcterms.referencesPalamutcu, S. (2010). Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945–2952. doi:10.1016/j.energy.2010.03.029
dcterms.referencesPavlov, D. (2011). and Technology and its Influence on the Product.
dcterms.referencesPavlov, D. (2011). Lead-acid batteries: Science and technology. A handbook of lead-acid battery technology and its Influence on the product. Ámsterdam.
dcterms.referencesPayne, J. (2001). Communication; Applications.
dcterms.referencesPicazo-Ródenas, M. J., Royo, R., Antonino-Daviu, J., & Roger-Folch, J. (2013). Use of the infrared data for heating curve computation in induction motors: Application to fault diagnosis. Engineering Failure Analysis, 35, 178–192. doi:10.1016/j.engfailanal.2013.01.018
dcterms.referencesPonce-Silva, M., & Moreno-Basaldúa, E. A. (2015). Alternative definitions of energy for power meters in non-sinusoidal systems. International Journal of Electrical Power and Energy Systems, 64, 1206–1213. doi:10.1016/j.ijepes.2014.09.019
dcterms.referencesPosch, A., Brudermann, T., Braschel, N., & Gabriel, M. (2015). Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291–299. doi:10.1016/j.jclepro.2014.11.044
dcterms.referencesProut, L. (1993). Aspects of lead / acid battery technology 4. Plate Formation. Journal of Power Sources, 41(1), 117–138. doi:10.1016/0378-7753(93)85012-D
dcterms.referencesPutois, F. (1995). Market for nickel-cadmium batteries. Journal of Power Sources, 57(1-2), 67–70. doi:10.1016/0378-7753(95)02243-0
dcterms.referencesReport Buyer Ltd. (2015). Global and China Lead-acid Battery Industry Report, 2015-2018.
dcterms.referencesRodríguez, L., Castellano, M., & Caridad, M. (2017). Planificación estratégica de recursos humanos en empresas de consumo masivo. IJMSOR: International Journal of Management Science & Operation Research, 2(1), 38-43. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/84
dcterms.referencesRudberg, M., Waldemarsson, M., & Lidestam, H. (2013). Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487–496. doi:10.1016/j.apenergy.2012.11.027
dcterms.referencesRydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1), 21–29. doi:10.1016/S0378-7753(98)00249-3
dcterms.referencesRydh, C. J., & Sandén, B. A. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11-12), 1957–1979. doi:10.1016/j.enconman.2004.10.003
dcterms.referencesScrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi:10.1016/j.jpowsour.2009.11.048
dcterms.referencesSoroko, M., & Howell, K. (2018). Infrared Thermography: Current Applications in Equine Medicine. Journal of Equine Veterinary Science, 60, 90–96.e2. doi:10.1016/j.jevs.2016.11.002
dcterms.referencesSoto, J., Borroto, A., Bah, M. A., González, R., Curbelo, M., & Díaz, A. M. (2014). Diseño y aplicación de un procedimiento para la planificación energética según la NC-ISO 50001: 2011. Ingeniería Energética, XXXV(1), 38–47.
dcterms.referencesSullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories for batteries. Energy Conversion and Management, 58, 134–148. doi:10.1016/j.enconman.2012.01.001
dcterms.referencesTang, K., Congedo, P. M., & Abgrall, R. (2016). Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation. Journal of Computational Physics, 314, 557–589. doi:10.1016/j.jcp.2016.03.026
dcterms.referencesVine, E. (2005). An international survey of the energy service company ESCO industry. Energy Policy, 33(5), 691–704. doi:10.1016/j.enpol.2003.09.014
dcterms.referencesWeinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals - Manufacturing Technology, 60(1), 41–44. doi:10.1016/j.cirp.2011.03.015
dcterms.referencesWong, Y. S., Hurley, W. G., & Wölfle, W. H. (2008). Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783–791. doi:10.1016/j.jpowsour.2008.05.069
dcterms.referencesXu, C., Xie, J., Huang, W., Chen, G., & Gong, X. (2018). Improving defect visibility in square pulse thermography of metallic components using correlation analysis. Mechanical Systems and Signal Processing, 103, 162–173. doi:10.1016/j.ymssp.2017.09.030
dcterms.referencesYuasa Battery Inc. (2009). NP / NPH / NPX SERIES SEALED RECHARGEABLE LEAD-ACID BATTERIES.
dcterms.referencesY. De la Peña, G. Bordeth; H. Campo; & U. Murillo “Clean Energies: An Opportunity to Save the Planet”, IJMSOR, vol. 3, no. 1, pp. 21-25, 2018. https://doi.org/10.17981/ijmsor.03.01.04
dc.contributor.tutorCabello Eras, Juan José
dc.contributor.coasesorHernández Herrera, Hernán


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record