Show simple item record

dc.creatorDe-La-Hoz-Franco, Emiro
dc.creatorOviedo Carrascal, Ana Isabel
dc.creatorAriza Colpas, Paola Patricia
dc.description.abstractThis article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for the processing of this type of data. This article shows the implementation of the K-means algorithm to determine the location of the news described in RSS format and the results of this type of grouping through a descriptive analysis of the resulting
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.sourceInternational Conference on Data Mining and Big Dataspa
dc.subjectRSS news’s formatspa
dc.subjectSimple K-meansspa
dc.subjectBag of wordsspa
dc.subjectText miningspa
dc.titleUsing K-Means Algorithm for Description Analysis of Text in RSS News Formatspa
dcterms.references1. Palechor, F., De la hoz manotas, A., De la hoz franco, E., Colpas, P: Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems. J. Theor. Appl. Inf. Technol. 82(2) (2015)spa
dcterms.references2. Calabria-Sarmiento, J.C., et al.: Software applications to health sector: a systematic review of literature (2018)spa
dcterms.references3. Sen, T., Ali, M.R., Hoque, M.E., Epstein, R., Duberstein, P.: Modeling doctor-patient communication with affective text analysis. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 170–177. IEEE (2017)spa
dcterms.references4. Jeon, S.W., Lee, H.J., Cho, S.: Building industry network based on business text: corporate disclosures and news. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4696–4704. IEEE (2017)spa
dcterms.references5. Irfan, M., Zulfikar, W.B.: Implementation of fuzzy C-Means algorithm and TF-IDF on English journal summary. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–5. IEEE (2017)spa
dcterms.references6. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access 6, 59192–59210 (2018)spa
dcterms.references7. Zhang, X., Yu, Q.: Hotel reviews sentiment analysis based on word vector clustering. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 260–264. IEEE (2017)spa
dcterms.references8. Vieira, A.S., Borrajo, L., Iglesias, E.L.: Improving the text classification using clustering and a novel HMM to reduce the dimensionality. Comput. Methods Programs Biomed. 136, 119–130 (2016)spa
dcterms.references9. Wu, H., Zou, B., Zhao, Y.Q., Chen, Z., Zhu, C., Guo, J.: Natural scene text detection by multi-scale adaptive color clustering and non-text filtering. Neurocomputing 214, 1011–1025 (2016)spa
dcterms.references10. Palechor, F.M., De la Hoz Manotas, A., Colpas, P.A., Ojeda, J.S., Ortega, R.M., Melo, M.P.: Cardiovascular disease analysis using supervised and unsupervised data mining techniques. JSW 12(2), 81–90 (2017)spa
dcterms.references11. Aradhya, V.M., Pavithra, M.S.: A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video. Appl. Comput. Inform. (2014)spa
dcterms.references12. Bharti, K.K., Singh, P.K.: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl. Soft Comput. 43, 20–34 (2016)spa
dcterms.references13. Li, C.H.: Confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 48(3), 936–949 (2016)spa
dcterms.references14. Melissa, A., François, R., Mohamed, N.: Graph modularity maximization as an effective method for co-clustering text data. Knowl.-Based Syst. 109(1), 160–173 (2016)spa
dcterms.references15. Mendoza-Palechor, F.E., Ariza-Colpas, P.P., Sepulveda-Ojeda, J.A., De-la-Hoz-Manotas, A., Piñeres Melo, M.: Fertility analysis method based on supervised and unsupervised data mining techniques (2016)spa
dcterms.references16. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)spa
dcterms.references17. Shafiabady, N., Lee, L.H., Rajkumar, R., Kallimani, V.P., Akram, N.A., Isa, D.: Using unsupervised clustering approach to train the Support Vector Machine for text classification. Neurocomputing 211, 4–10 (2016)spa
dcterms.references18. Zhang, W., Tang, X., Yoshida, T.: Tesc: an approach to text classification using semi-supervised clustering. Knowl.-Based Syst. 75, 152–160 (2015)spa
dcterms.references19. De França, F.O.: A hash-based co-clustering algorithm for categorical data. arXiv preprint arXiv:1407.7753 (2014)spa
dcterms.references20. Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., Mantilla, M.: El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito (2018)spa
dcterms.references21. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)spa
dcterms.references22. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: SODA, vol. 99, pp. 291–299 (1999)spa
dcterms.references23. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS, pp. 873–879 (2000)spa
dcterms.references24. Jain, A.K., Dubes, R.C.: Algorithms for clustering data (1988)spa
dcterms.references25. Guerrero Cuentas, H.R., Polo Mercado, S.S., Martinez Royert, J.C., Ariza Colpas, P.P.: Trabajo colaborativo como estrategia didáctica para el desarrollo del pensamiento crítico (2018)spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International