Show simple item record

dc.creatorMORENO RIOS, ANDREA LILIANA
dc.creatorBallesteros, Luz M.
dc.creatorCastro-López, Camilo A.
dc.date.accessioned2020-11-24T16:29:43Z
dc.date.available2020-11-24T16:29:43Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/11323/7467
dc.description.abstractThis research describes the effect of the photocatalyst concentration, irradiation power, concentration of inorganic salts and the initial pH on the three parameters of a Langmuir-Hinshelwood-model: inactivation kinetic constant; k, dimensionless interaction coefficient; K*, and inhibition coefficient; n, which was applied to the photocatalytic disinfection of water with TiO2. In general, there is a qualitative finding in the effects on parameters of some variables since an increase in k was always related to a decrease in K*. Such relation was observed for the amount of TiO2, the irradiation power and the increase in concentration of inorganic salts: NaCl and CaCO3. Moreover, increase in MgSO4 concentration do not cause a tendency of change on the described parameters. As for pH of the reaction media, an increasing effect on k is observed when its value promotes proximity between bacteria and TiO2 particles. Finally, small changes were observed for n with the studied variables, but indeed significant for mathematical fitting. Thus, these findings led to the formulation of a mathematical description of the effects of the most important variables and their interactions on the kinetic parameters. This last hypothesis was validated by comparison of experimental and predicted data with high correlations.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSeparation Science and Technologyspa
dc.subjectPhotocatalytic disinfectionspa
dc.subjectTiO2spa
dc.subjectkineticsspa
dc.subjectprocess variablesspa
dc.titleInfluence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of waterspa
dc.typearticlespa
dcterms.references[1] Bylund, J.; Toljander, J.; Lysén, M.; Rasti, N.; Engqvist, J.; Simonsson, M. Measuring Sporadic Gastrointestinal Illness Associated with Drinking Water - an Overview of Methodologies. J. Water Health. 2017, 15(3), 321–340. DOI: 10.2166/wh.2017.261.spa
dcterms.references[2] Verma, K.; Gupta, D.; Gupta, A. B. Optimization of Ozone Disinfection and Its Effect on Trihalomethanes. J. Environ. Chem. Eng. 2016, 4, 3021–3032. DOI: 10.1016/j.jece.2016.06.017.spa
dcterms.references[3] Mecha, A. C.; Onyango, M. S.; Ochieng, A.; Momba, M. N. B. Evaluation of Synergy and Bacterial Regrowth in Photocatalytic Ozonation Disinfection of Municipal Wastewater. Sci. Total Environ. 2017, 601–602, 626–635. DOI: 10.1016/j.scitotenv.2017.05.204.spa
dcterms.references[4] Nie, X. B.; Li, Z. H.; Long, Y. N.; He, P. P.; Xu, C. Chlorine Inactivation of Tubifex in Drinking Water and the Synergistic Effect of Sequential Inactivation with UV Irradiation and Chlorine. Chemosphere. 2017, 177, 7–14. DOI: 10.1016/j.chemosphere.2017.02.142.spa
dcterms.references[5] Du, Y.; Lv, X. T.; Wu, Q. Y.; Zhang, D. Y.; Zhou, Y. T.; Peng, L.; Hu, H. Y. Formation and Control of Disinfection by Products and Toxicity during Reclaimed Water Chlorination: A Review. J Environ Sci. 2017, 58, 5–63. DOI: 10.1016/j.jes.2017.01.013.spa
dcterms.references[6] Rokicka-Konieczna, P.; Makowska-Szczupak, A.; Kusiak-Nejman, E.; Morawski, A. W. Photocatalytic Water Disinfection under the Artificial Solar Light by Fructose-modified TiO2. Chem. Eng. J. 2019, 372, 203–215. DOI: 10.1016/j.cej.2019.04.113.spa
dcterms.references[7] Figueredo, F. M.; Gutiérrez, A. S.; Acevedo, M. A.; Manzano, M. A. Estimating Lethal Dose of Solar Radiation for Enterococus Inactivation through Radiation Reachig the Water Layer. Application to Solar Water Disinfection (SODIS). Solar Energy. 2017, 158, 303–310. DOI: 10.1016/j.solener.2017.09.006.spa
dcterms.references[8] Castro, A. M.; Polo, L. M. I.; Marugán, J.; Fernández, I. P. F. Mechanistic Model of the Escherichia Coli Inactivation by Solar Disinfection Based on the Photo-generation of Internal ROS and the Photo-inactivation of Enzymes: CAT and SOD. Chem. Eng. J. 2017, 318, 214–223. DOI: 10.1016/j. cej.2016.06.093.spa
dcterms.references[9] Gutiérrez, Z. H. M.; Alvear, D. J. J.; Rengifo, H. J. A.; Sanabria, J. Addition of Hydrogen Peroxide to Groundwater with Natural Iron INduces Water Disinfection by Photo-Fenton at Circumneutral pH and Other Photochemical Events. Photochem. Photobiol. 2017, 93(5), 1224–1231. DOI: 10.1111/ php.12779.spa
dcterms.references[10] Reddy, P. V. L.; Kavitha, B.; Reddy, P. A. K.; Kim, K. H. TiO2-based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. DOI: 10.1016/j.envres.2017.01.018.spa
dcterms.references[11] Zhu, Z.; Cai, H.; Sun, D. W. Titanium Dioxide (TiO2) Photocatalysis Technology for Nonthermal Inactivation of Microorganisms in Foods. Trend Food Sci. Technol. 2018, 75, 23–35. DOI: 10.1016/j.tifs.2018.02.018.spa
dcterms.references[12] Uyguner Demirel, C. S.; Cemre Birben, N.; Bekbolet, M. A Comprehensive Review on the Use of Second Generation TiO2 Photocatalysts: Microorganism Inactivation. Chemosphere. 2018, 211, 420–448. DOI: 10.1016/j.chemosphere.2018.07.121.spa
dcterms.references[13] Cai, Y.; Stromme, M.; Welch, K. Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. J. Biomater. Nanobiotechnol. 2014, 5, 200–209. DOI: 10.4236/jbnb.2014.53024.spa
dcterms.references[14] An, T.; Zhao, H.; Wong, P. K., Editors. Advances in Photocatalytic Disinfection; Springer Nature: Berlin, Germany, 2017. http://www.springer.com/gp/book/ 9783662534946spa
dcterms.references[15] Wang, W.; Huang, G.; Yu, J. C.; Wong, P. K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. J Environ Sci. 2015, 34, 232–247. DOI: 10.1016/j.jes.2015.05.003.spa
dcterms.references[16] Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M. C.; Horvatovich, P.; Gies, J. P.; Keller, V.; Keller, N.; Andre, P. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia Coli. Appl. Environ. Microbiol. 2014, 80(8), 2573–2581. DOI: 10.1128/ AEM.03995-13.spa
dcterms.references[17] Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. DOI: 10.1016/j.watres.2010.02.039.spa
dcterms.references[18] Fagan, R.; McCormack, D. E.; Dionysiou, D. D.; Pillai, S. C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. DOI: 10.1016/j.mssp.2015.07.052.spa
dcterms.references[19] Castro, C. A.; Osorio, P.; Sienkiewicz, A.; Pulgarin, C.; Centeno, A.; Giraldo, S. A. Photocatalytic Production of 1O2 and OH Mediated by Silver Oxidation during the Photoinactivation of Escherichia Coli with TiO2. J. Hazard. Mater. 2012, 211–212, 172–181. DOI: 10.1016/j.jhazmat.2011.08.076.spa
dcterms.references[20] Castro, C. A.; Jurado, A.; Sissa, D.; Giraldo, S. A. Performance of Ag-TiO2 Photocatalysts Towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations. Int. J. Photoenergy 2012, 2012, 10. Article ID 261045. DOI: 10.1155/2012/261045.spa
dcterms.references[21] Dalrymple, O. K.; Stefanakos, E.; Trotz, M. A.; Goswami, D. Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. DOI: 10.1016/j. apcatb.2010.05.001.spa
dcterms.references[22] Sichel, C.; Tello, J.; de Cara, M.; Fernández, I. P. Effect of UV Solar Intensity and Dose on the Photocatalytic Disinfection of Bacteria and Fungi. Catal. Today. 2007, 129, 152–160. DOI: 10.1016/j.cattod.2007.06.061.spa
dcterms.references[23] Malato, S.; Maldonado, M. I.; Fernández, I. P.; Oller, I.; Polo, I.; Sánchez, M. R. Decontamination and Disinfection of Water by Solar Photocatalysis: The Pilot Plants of the PLataforma Solar De Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. DOI: 10.1016/j.mssp.2015.07.017.spa
dcterms.references[24] Rincón, A. G.; Pulgarín, C. Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E.coli K12 Photocatalytic Inactivation by TiO2 Implication in Solar Water Disinfection. Appl. Catal. B Environ. 2004, 51, 283–302. DOI: 10.1016/j. apcatb.2004.03.007.spa
dcterms.references[25] Rincón, A. G.; Pulgarín, C. Field Solar E.coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose and Appropriate Parameter for Standarization of Water Solar Disinfection? Solar Energy. 2004, 77, 635–648. DOI: 10.1016/j.solener.2004.08.002.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://www.tandfonline.com/doi/full/10.1080/01496395.2019.1676784spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttp://doi.org/10.1080/01496395.2019.1676784


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International