Show simple item record

dc.creatorGuzmán Muñoz, Juan
dc.creatorOrtega Bolaños, Ramiro Hernán
dc.date.accessioned2020-11-25T20:07:27Z
dc.date.available2020-11-25T20:07:27Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7495
dc.descriptionIngeniería Eléctricaspa
dc.description.abstractIn the present study, the characterization of the quality of the energy of an electrical system of an industry specialized in metalworking with non-linear variable electrical loads is carried out, for the identification of problems that affect the operation of the equipment. The study was based on the implementation of sequential steps based on the characteristics of the electrical system and the requirements of power quality standards. Measurements were made in the transformer of the common connection point and in the twelve distribution transformers of the plant with class A network analyzers. As a result of the study, problems of voltage variation and power factor were identified in all transformers, and it was shown that in 11 distribution transformers, there are non-conformities in relation to the limits of total distortion of current demand. It was possible to show that the individual harmonic of the fifth order current (negative sequence) predominated in six transformers, the individual harmonics of the seventh order current (positive sequence) predominated in five transformers, and the individual harmonics of the third order current (zero sequence).), were the most recurrent in a transformer.spa
dc.description.abstractEn el presente estudio, se realiza la caracterización de la calidad de la energía de un sistema eléctrico de una industria especializada en metalmecánica con cargas eléctricas variables no lineales, para la identificación de problemas que afectan la operación de los equipos. El estudio se basó en la implementación de unos pasos secuenciales basados en las características del sistema eléctrico y en los requerimientos de las normas de calidad de la energía. Se realizó mediciones en el transformador del punto de conexión común y en los doce transformadores de distribución de la planta con analizadores de redes de clase A. Como resultado del estudio, se identificaron problemas de variación de tensión y factor de potencia en todos los transformadores, y se pudo demostrar que, en 11 transformadores de distribución, existieron no conformidades en relación con los límites de distorsión total de demanda de corriente. Se pudo evidenciar que el armónico individual de corriente de quinto orden (secuencia negativa) predominó en seis transformadores, los armónicos individuales de corriente del séptimo orden (secuencia positiva) predominaron en cinco transformadores, y los armónicos individuales de corriente del tercer orden (secuencia cero), fueron los más recurrentes en un transformador.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectHarmonicsspa
dc.subjectPower qualityspa
dc.subjectNon-linear loadsspa
dc.subjectVariable loadsspa
dc.subjectIndustrial electrical systemsspa
dc.subjectArmónicosspa
dc.subjectCalidad de la energíaspa
dc.subjectCargas no linealesspa
dc.subjectCargas variablesspa
dc.subjectSistemas eléctricos industrialesspa
dc.titleCaracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Linealesspa
dc.typebachelorThesisspa
dcterms.referencesAESoluciones. (2014). AESoAESoluciones. 2014. “AESoluciones. 2014. ‘Los Efectos De Los Armónicos Y Sus Soluciones.’ : 10. Aesoluciones@aes.Com.Los Efectos De Los Armónicos Y Sus Soluciones.” : 10. aesoluciones@aes.com.luciones. 2014. “Los Efectos De Los Armónicos Y Sus Solucio. 10. aesoluciones@aes.comspa
dcterms.referencesAramwanid, P., & Boonyaroonate, I. (2015). Power quality impact study and analysis of electrical power efficacy in sugar industry. ECTI-CON 2015 - 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 9–12. https://doi.org/10.1109/ECTICon.2015.7206958spa
dcterms.referencesBhagavathy, P., Latha, R., & Elango, S. (2018). A Case Study on the Impact of Power Quality Analysis in Textile Industry. 2018 13th International Conference on Industrial and Information Systems, ICIIS 2018 - Proceedings, 978, 453–456. https://doi.org/10.1109/ICIINFS.2018.8721407spa
dcterms.referencesBishop, M. T. (1996). Evaluating harmonic-induced transformer heating. IEEE Power Engineering Review, 16(1), 56–57.spa
dcterms.referencesBoonseng, C., Chompoo-inwai, C., Kinnares, V., Nakawiwat, K., & Apiratikul, P. (2001). Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects. Proceedings Second International Conference on Properties and Applications, 3, 1003–1008.spa
dcterms.referencesCarrera, E., & Ordoñez, F. (2011). Análisis De Calidad De Energía En Tagsa.spa
dcterms.referencesCervantes, O. (2014). METODOLOGÍA DE MEDICIÓN DE CALIDAD DE ENERGÍA ELÉCTRICA EN BASE A NORMAS NACIONALES E INTERNACIONALES PARA LA UNIVERSIDAD DE LA COSTA - CUC (Vol. 1, Issue 4).spa
dcterms.referencesChen, W., & Cheng, Z. (1988). An experimental study of the damaging effects of harmonics in power networks on the capacitor dielectrics. Proceedings Second International Conference on Properties and Applications, 2, . 645-648.spa
dcterms.referencesChoi, W., Lee, W., Han, D., & Sarlioglu, B. (2018). New Configuration of Multifunctional Grid- Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality. IEEE Transactions on Industry Applications, 54(6), 6374–6382. https://doi.org/10.1109/TIA.2018.2861737spa
dcterms.referencesChurio Silvera, O., Vanegas Chamorro, M., & Valencia Ochoa, G. (2018). Estudio y diagnóstico de la calidad de la energía de un campus universitario en la costa norte de Colombia. AVANCES: Investigación En Ingeniería, 15(1), 271–285. https://doi.org/10.18041/1794- 4953/avances.1.4739spa
dcterms.referencesCommittee, D., Power, I., & Society, E. (2009). IEEE Std 1159 - IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), 2009(June), 1–81. https://doi.org/10.1109/IEEESTD.2009.5154067spa
dcterms.referencesCommittee, D., Power, I., & Society, E. (2014). IEEE Std 519 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society Sponsored by the Transmission and Distribution Committee I. 2014. https://doi.org/10.1109/IEEESTD.2014.6826459spa
dcterms.referencesCommittee, T., & Society, I. P. E. (1986). An American National Standard IEEE Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents. ANSI/IEEE Std C57.110-1986, December, 0_1. https://doi.org/10.1109/IEEESTD.1988.81682spa
dcterms.referencesCREG. (2018). Metodología para la remuneración de la actividad de distribución de energía electrica en el Sistema Interconectado Nacional. In Resolución 015 (p. 239). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d5772 6a90525822900064dac?OpenDocumentspa
dcterms.referencesDe Abreu, J. P. G., & Emanuel, A. E. (2002). Induction motor thermal aging caused by voltage distortion and imbalance: Loss of useful life and its estimated cost. IEEE Transactions on Industry Applications, 38(1), 12–20. https://doi.org/10.1109/28.980339spa
dcterms.referencesDigalovski, M., Najdenkoski, K., & Rafajlovski, G. (2013). Impact of current high order harmonic to core losses of three-phase distribution transformer. IEEE EuroCon 2013, July, 1531– 1535. https://doi.org/10.1109/EUROCON.2013.6625181spa
dcterms.referencesDonolo, P., Bosio, G., De Angelo, C., Castellino, A., & Garcia, G. (2016). Effects of voltage unbalance on IM power, torque and vibrations. 140, 866–873.spa
dcterms.referencesDranetz. (2020). Dranetz HDPQ Visa Plus.spa
dcterms.referencesEnríquez Harper, G. (2013). EL ABC de la calidad de la ENERGIA ELECTRICA. In Profesor titular de la ESIME-IPN (Vol. 0). https://doi.org/10.1017/CBO9781107415324.004spa
dcterms.referencesICONTEC. (2008). NTC 5001: Calidad de la potencia eléctrica. Límites y metodología de evaluación en punto de conexión común (Issue 571).spa
dcterms.referencesICONTEC. (2013). NTC 1340: Electrotecnia. Tensiones y frecuencia nominales en sistemas de energía eléctrica en redes de servicio público (Issue 571).spa
dcterms.referencesIEC. (2015). Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods.spa
dcterms.referencesInan, A., & Attar, F. (2000). Life Expectancy Analysis for an Electric Motor. Proceedings Electrotechnical Conference, 2, 997–999.spa
dcterms.referencesIngale, V. P., Jadhav, A. D., Takawale, N. K., & Mangate, S. D. (2018). Power Quality Analysis for Sugar Industry with Cogeneration. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 776–781. https://doi.org/10.1109/ICICCT.2018.8472949spa
dcterms.referencesJafari Aghbolaghi, A., Mahdavi Tabatabaei, N., Boushehri, N. S., & Hojjati Parast, F. (2017). Reactive Power Control in AC Power Systems. In Power Systems (pp. 345–409). https://doi.org/10.1007/978-3-319-51118-4spa
dcterms.referencesJasinski, M., Sikorski, T., & Borkowski, K. (2018). Clusteringa tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electric Power Systems Research. https://doi.org/https://doi.org/10.101/j.epsr.2018.09.020spa
dcterms.referencesJiménez, A. F. S. (2015). Guía metodológica para el análisis de hundimientos de tensión en el sistema de distribución de la CHEC.spa
dcterms.referencesMassey, G. W. (1994). Estimation Methods for Power System Harmonic Effects on Power Distribution Transformers. IEEE Transactions on Industry Applications, 30(2), 485–489. https://doi.org/10.1109/28.287505spa
dcterms.referencesMetrel, 2017. (2017). Calidad de la energía Análisis de potencia , armónicos y perturbaciones de red en sistemas trifásicos de distribución. 20. https://doi.org/20 750 958spa
dcterms.referencesMetrel d.d. (2020). MI 2892 Power Master Analizadores de la calidad de la energía.spa
dcterms.referencesMiguel Torres, Guianella Ibarra, E. B. (2004). ESCUELA SUPERIOR POLITECNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación.spa
dcterms.referencesMiron, A., Chindriş, M., & Cziker, A. (2012). Impact of unbalance in harmonic polluted power networks. SPEEDAM 2012 - 21st International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 674–678. https://doi.org/10.1109/SPEEDAM.2012.6264475spa
dcterms.referencesMonzón, M. (2013). Calidad De Suministro Eléctrico: Huecos De Tensión. Mitigación De Sus Efectos En Las Plantas Industriales.spa
dcterms.referencesMovahed, S. R., Oraee Mirzamani, S. H., Rajabi, A., & Daneshvar, H. (2010). Estimation of insulation life of inverter-fed induction motors. PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 335–339. https://doi.org/10.1109/PEDSTC.2010.5471797spa
dcterms.referencesNoriega, E., Cabello, J. J., Hernández, H., Sousa, V., Balbis, M., Silva, J. I., & Sagastume, A. (2019). Energy planning and management during battery manufacturing. Gestao e Producao, 26(4), 1–14. https://doi.org/10.1590/0104-530X3928-19spa
dcterms.referencesNuñez, J. R., Pérez, Y., Benítez, I., & Noriega, E. (2021). Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering, 11(1), 611–619. https://doi.org/10.11591/ijece.v11i1.pp611-619spa
dcterms.referencesOraee, H. (2000). A quantative approach to estimate the life expectancy of motor insulation systems. IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 790–796. https://doi.org/10.1109/94.891990spa
dcterms.referencesPierce, L. W. (1996). Transformer design and application considerations for nonsinusoidal load currents. IEEE Transactions on Industry Applications, 32(3), 633–645. https://doi.org/10.1109/28.502176spa
dcterms.referencesRaja, R., Yash, S., Shubham, S., Indragandhi, V., Vijayakmar, V., Saravanan, P., & Subramaniyaswamy, V. (2020). IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. www.elsevier.com/locaate/fgcsspa
dcterms.referencesRajarajan, R., & Prakash, R. (2020). A reformed adaptive frequency passivness control for unified power quality compensator with model parametrer ability to improve power quality. Micropocessors and Microsystems. www.elsevier.com/locate/micprospa
dcterms.referencesRawa, M. J. H., Thomas, D. W. P., & Sumner, M. (2013). Power quality monitoring and simulation of a personal computer based on IEEE 1459-2010. IEEE International Symposium on Electromagnetic Compatibility, 671–675.spa
dcterms.referencesRönnberg, S., & Bollen, M. (2016). Power quality issues in the electric power system of the future. Electricity Journal, 29(10), 49–61. https://doi.org/10.1016/j.tej.2016.11.006spa
dcterms.referencesSaid, D. M., Nor, K. M., & Majid, M. S. (2010). Analysis of distribution transformer losses and life expectancy using measured harmonic data. ICHQP 2010 - 14th International Conference on Harmonics and Quality of Power, 0–5. https://doi.org/10.1109/ICHQP.2010.5625403spa
dcterms.referencesSECOVI. (2006). Estudio de Calidad de Energía ® SECOVI.spa
dcterms.referencesShah, P., Hussain, I., Singh, B., Chandra, A., & Al-Haddad, K. (2019). GI-Based control scheme for single-stage grid interfaced SECS for power quality improvement. IEEE Transactions on Industry Applications, 55(1), 869–881. https://doi.org/10.1109/TIA.2018.2866375spa
dcterms.referencesSingh, G. K. (2005). A research survey of induction motor operation with non-sinusoidal supply wave forms. Power Generation and Propulsion, Electrical Vehicles, 75, (2 3). https://doi.org/10.1016/s0140-6701(03)80027-9spa
dcterms.referencesSouli, A., & Hellal, A. (2014). Design of a computer code to evaluate the influence of the harmonics in the Transient Stability studies of electrical networks. 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices, SSD 2014, 107–112. https://doi.org/10.1109/SSD.2014.6808804spa
dcterms.referencesSousa, V., Herrera, H. H., Quispe, E. C., Viego, P. R., & Gómez, J. R. (2017). Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. International Journal of Electrical and Computer Engineering, 7(6), 3207–3216. https://doi.org/10.11591/ijece.v7i6.pp3207-3216spa
dcterms.referencesSousa, V., Viego, P., Gómez, J., Lemozy, N., Jurado, A., & Quispe, E. (2015). Procedure for determining induction motor efficiency working under distorted grid voltages. IEEE Transactions on Energy Conversion, 30(1), 331–339. https://doi.org/10.1109/TEC.2014.2335994spa
dcterms.referencesStrandt, A., Hu, J., & Wei, L. (2014). No-load power losses and motor overheating effects versus PWM switching frequencies. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, 280–283. https://doi.org/10.1109/ICRERA.2014.7016570spa
dcterms.referencesWang, Y., Bai, B., & Liu, W. F. (2014). Research on discharging bearing currents of PWM inverter-fed variable frequency induction motor. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 2945–2949. https://doi.org/10.1109/ICEMS.2014.7014000spa
dcterms.referencesWang, Y., Liu, W., Chen, Z., & Bai, B. (2014). Calculation of high frequency bearing currents of PWM inverter-fed VF induction motor. Proceedings - 2014 International Power Electronics and Application Conference and Exposition, IEEE PEAC 2014, 51277122, 1428–1433. https://doi.org/10.1109/PEAC.2014.7038074spa
dcterms.referencesYadav, J. R., Vasudevan, K., Kumar, D., & Shanmugam, P. (2019). Power quality assessment for industrial plants: A comparative study. Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, CPE- POWERENG 2019. https://doi.org/10.1109/CPE.2019.8862321spa
dcterms.referencesYaghoobi, J., Abdullah, A., Kumar, D., Zare, F., & Soltani, H. (2019). Power Quality Issues of Distorted and Weak Distribution Networks in Mining Industry: A Review. IEEE Access, 7, 162500–162518. https://doi.org/10.1109/ACCESS.2019.2950911spa
dcterms.referencesZhu, B., Bai, B., & He, H. (2008). Effects of the inverter parameters on the eddy current losses in induction motor fed by PWM inverter. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008, 1, 4240–4243.spa
dc.contributor.tutorSousa Santos, Vladimir
dc.contributor.tutorNoriega Angarita, Eliana
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International