Mostrar el registro sencillo del ítem

dc.contributor.authorMedellín Ruiz, Juan Pablospa
dc.contributor.authorRubio-Arias, Jacobo Á.spa
dc.contributor.authorClemente-Suárez, Vicente Javierspa
dc.contributor.authorRamos-Campo, Domingo Jesússpa
dc.date.accessioned2020-12-22T18:29:08Z
dc.date.available2020-12-22T18:29:08Z
dc.date.issued2020-11-29
dc.identifier.issn2076-3417spa
dc.identifier.urihttps://hdl.handle.net/11323/7628spa
dc.description.abstractA systematic review and meta-analysis were performed to determine if heart rate variability-guided training (HRV-g), compared to predefined training (PT), maximizes the further improvement of endurance physiological and performance markers in healthy individuals. This analysis included randomized controlled trials assessing the effects of HRV-g vs. PT on endurance physiological and performance markers in untrained, physically active, and well-trained subjects. Eight articles qualified for inclusion. HRV-g training significantly improved maximum oxygen uptake (VO2max) (MD = 2.84, CI: 1.41, 4.27; p < 0.0001), maximum aerobic power or speed (WMax) (SMD = 0.66, 95% CI 0.33, 0.98; p < 0.0001), aerobic performance (SMD = 0.71, CI 0.16, 1.25; p = 0.01) and power or speed at ventilatory thresholds (VT) VT1 (SMD = 0.62, CI 0.04, 1.20; p = 0.04) and VT2 (SMD = 0.81, CI 0.41, 1.22; p < 0.0001). However, HRV-g did not show significant differences in VO2max (MD = 0.96, CI −1.11, 3.03; p = 0.36), WMax (SMD = 0.06, CI −0.26, 0.38; p = 0.72), or aerobic performance (SMD = 0.14, CI −0.22, 0.51; p = 0.45) in power or speed at VT1 (SMD = 0.27, 95% CI −0.16, 0.70; p = 0.22) or VT2 (SMD = 0.18, 95% CI −0.20, 0.57; p = 0.35), when compared to PT. Although HRV-based training periodization improved both physiological variables and aerobic performance, this method did not provide significant benefit over PT.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceApplied Sciencesspa
dc.subjectAutonomic nervous systemspa
dc.subjectCardiac autonomic regulationspa
dc.subjectCardiorespiratory fitnessspa
dc.subjectDaily trainingspa
dc.subjectEndurancespa
dc.titleEffectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysisspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/2076-3417/10/23/8532spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doidoi:10.3390/app10238532spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2019, 205, 2–8. [CrossRef]spa
dc.relation.references2. Düking, P.; Zinner, C.; Reed, J.L.; Holmberg, H.; Sperlich, B. Predefined vs. data guided training prescription based on autonomic nervous system variation: A systematic review. Scand. J. Med. Sci. Sport. 2020, 30, 2291–2304. [CrossRef]spa
dc.relation.references3. Martín, J.P.G.; Clemente-Suárez, V.J.; Ramos-Campo, D.J. Hematological and running performance modification of trained athletes after reverse vs. block training periodization. Int. J. Environ. Res. Public Health 2020, 17, 4825. [CrossRef]spa
dc.relation.references4. Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. [CrossRef] [PubMed]spa
dc.relation.references5. Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sporttraumatol. 2013, 61, 30–36.spa
dc.relation.references6. Halson, S.L. Monitoring training load to understand fatigue in athletes. Sport. Med. 2014, 44, 139–147. [CrossRef]spa
dc.relation.references7. Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [CrossRef]spa
dc.relation.references8. Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport. Physiol. Perform. 2017, 12, 161–170. [CrossRef]spa
dc.relation.references9. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance training guided individually by daily heart rate variability measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [CrossRef]spa
dc.relation.references10. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Plews, D.; Moya-Ramon, M. Training prescription guided by heart rate variability vs. block periodization in welltrained cyclists. J. Strength Cond. Res. 2019, 34, 1511–1518. [CrossRef]spa
dc.relation.references11. Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training prescription guided by heart-rate variability in cycling. Int. J. Sport. Physiol. Perform. 2019, 14, 23–32. [CrossRef]spa
dc.relation.references12. Nuuttila, O.P.; Nikander, A.; Polomoshnov, D.; Laukkanen, J.A.; Häkkinen, K. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int. J. Sport. Med. 2017, 38, 909–920. [CrossRef]spa
dc.relation.references13. Botek, M.; McKune, A.J.; Krejci, J.; Stejskal, P.; Gaba, A. Change in performance in response to training load adjustment based on autonomic activity. Int. J. Sport. Med. 2014, 35, 482–488. [CrossRef] [PubMed]spa
dc.relation.references14. Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-moro, I.; Granero-Gallegos, A. HRV-guided training for professional endurance athletes: A protocol for a cluster-randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [CrossRef]spa
dc.relation.references15. Clemente-Suarez, V.J. Periodized training achieves better autonomic modulation and aerobic performance than non-periodized training. J. Sport. Med. Phys. Fitness 2018, 58, 1559–1564. [CrossRef]spa
dc.relation.references16. Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sport. Med. 2003, 33, 889–919. [CrossRef]spa
dc.relation.references17. Yanlin, C.; Fei, H.; Shengjia, X. Training variables and autonomic nervous system adaption. Chin. J. Tissue Eng. Res. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2020, 24, 312–319. [CrossRef]spa
dc.relation.references18. Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [CrossRef]spa
dc.relation.references19. Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur. Heart J. 1996, 17, 1043–1065. [CrossRef]spa
dc.relation.references20. Palak, K.; Furgała, A.; Biel, P.; Szyguła, Z.; Thor, P.J. Influence of physical training on the function of Autonomic nervous system in professional swimmers. Med. Sport. 2013, 17, 119–124. [CrossRef]spa
dc.relation.references21. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [CrossRef]spa
dc.relation.references22. Schmitt, L.; Willis, S.J.; Fardel, A.; Coulmy, N.; Millet, G.P. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur. J. Appl. Physiol. 2018, 118, 419–428. [CrossRef]spa
dc.relation.references23. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [CrossRef]spa
dc.relation.references24. Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovi´c, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, 5928. [CrossRef]spa
dc.relation.references25. Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557. [CrossRef]spa
dc.relation.references26. Vesterinen, V.; Nummela, A.; Heikura, I.; Laine, T.; Hynynen, E.; Botella, J.; Häkkinen, K. Individual endurance training prescription with heart rate variability. Med. Sci. Sport. Exerc. 2016, 48, 1347–1354. [CrossRef]spa
dc.relation.references27. Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Nissilä, J.; Virtanen, P.; Karjalainen, J.; Tulppo, M.P. Daily exercise prescription on the basis of hr variability among men and women. Med. Sci. Sport. Exerc. 2010, 42, 1355–1363. [CrossRef]spa
dc.relation.references28. Da Silva, D.F.; Ferraro, Z.M.; Adamo, K.B.; Machado, F.A. Endurance running training individually guided by HRV in ultrained women. J. Strength Cond. Res. 2019, 33, 736–746. [CrossRef]spa
dc.relation.references29. Frandsen, J.; Vest, S.D.; Larsen, S.; Dela, F.; Helge, J.W. Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sport. Med. 2017, 38, 975–982. [CrossRef]spa
dc.relation.references30. Tamburs, N.Y.; Rebelo, A.C.S.; Cesar, M.D.C.; Catai, A.M.; Takahashi, A.C.D.M.; Andrade, C.P.; Porta, A.; Silva, E.D. Relationship between heart rate variability and VO2 peak in active women. Rev. Bras. Med. Esporte 2014, 20, 354–358. [CrossRef]spa
dc.relation.references31. Vesterinen, V.; Hakkinen, K.; Hynynen, E.; Mikkola, J.; Hokka, L.; Nummela, A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand. J. Med. Sci. Sport. 2013, 23, 171–180. [CrossRef]spa
dc.relation.references32. Kiviniemi, A.M.; Tulppo, M.P.; Eskelinen, J.J.; Savolainen, A.M.; Kapanen, J.; Heinonen, I.H.A.; Hautala, A.J.; Hannukainen, J.C.; Kalliokoski, K.K. Autonomic function predicts fitness response to short-term high-intensity interval training. Int. J. Sport. Med. 2015, 36, 915–921. [CrossRef]spa
dc.relation.references33. Schmitt, L.; Regnard, J.; Parmentier, A.L.; Mauny, F.; Mourot, L.; Coulmy, N.; Millet, G.P. Typology of fatigue by heart rate variability analysis in elite Nordic-skiers. Int. J. Sport. Med. 2015, 36, 999–1007. [CrossRef]spa
dc.relation.references34. Schmitt, L.; Regnard, J.; Millet, G.P. Monitoring fatigue status with HRV measures in elite athletes: An avenue beyond RMSSD? Front. Physiol. 2015, 6, 343. [CrossRef]spa
dc.relation.references35. Bourdillon, N.; Schmitt, L.; Yazdani, S.; Vesin, J.M.; Millet, G.P. Minimal window duration for accurate HRV recording in athletes. Front. Neurosci. 2017, 11. [CrossRef]spa
dc.relation.references36. Melo, H.M.; Martins, T.C.; Nascimento, L.M.; Hoeller, A.A.; Walz, R.; Takase, E. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Ann. Noninvasive Electrocardiol. 2018, 23, e12565. [CrossRef]spa
dc.relation.references37. Saboul, D.; Pialoux, V.; Hautier, C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur. J. Sport Sci. 2013, 13, 534–542. [CrossRef]spa
dc.relation.references38. Sandercock, G.R.H.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [CrossRef]spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal