Show simple item record

dc.creatorSchneider, Ismael
dc.creatorTeixeira, Elba C.
dc.creatorDotto, Guilherme Luiz
dc.creatorYang, Xue-cheng
dc.creatorSilva Oliveira, Luis Felipe
dc.description.abstractAir pollution has become a major problem in urban areas due to increasing industrialization and urbanization. In this study ambient concentrations of PM1 and metal concentrations as well as source contributions were identified and quantified by using Positive Matrix Factorization (PMF) in receptor modeling in the Metropolitan Area of Porto Alegre, Brazil. The PM1 samples were collected on PTFE filters from December 2012 to December 2014 in two sampling sites. Major ion and trace element concentrations were assessed. The average concentrations were 12.8 and 15.2 μg/m3 for Canoas and Sapucaia do Sul sites, respectively. Major ion contributions of PM1 were secondary pollutants such as sulfate and nitrate. Trace elements, especially Cu, Pb, Zn, Cd, and Ni also made important contributions which are directly associated with anthropogenic contributions. Our results show significantly higher levels in winter than in summer. Most of the PM1 and the analyzed PM species and elements originated from anthropogenic sources, especially road traffic, combustion processes and industrial activities, which are grouped in 7 major contributing sources. A back-trajectory analysis showed that the long-range transport of pollutants was not relevant in relation to the contribution to PM1 and metal concentrations. This work highlights the importance of urban planning to reduce human health exposure to traffic and industrial emissions, combined with awareness-raising actions for citizens concerning the impact of indoor
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceGeoscience Frontiersspa
dc.subjectTrace elementsspa
dc.subjectSource apportionmentspa
dc.subjectBack trajectoryspa
dc.titleGeochemical study of submicron particulate matter (PM1) in a metropolitan areaspa
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., 2014. Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmos. Environ. 96, 186–200. doi:10.1016/
dcterms.referencesAldabe J., Elustondo D., Santamaría C., Lasheras E., Pandolfi M., et al., 2011. Chemical characterization and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102(1-2), 191–205. doi: 10.1016/
dcterms.referencesAlmeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., 2006. Approaching PM2.5 and PM2.5–10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci. Total Environ. 368(2-3), 663– 674. doi:10.1016/
dcterms.referencesAmato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., et al., 2009. Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmos. Environ. 43(17), 2770–2780. doi:10.1016/
dcterms.referencesAmato, F., Nava, S., Lucarelli, F., Querol, X., Alastuey, A., et al., 2010. A comprehensive assessment of PM emissions from paved roads: Real-world Emission Factors and intense street cleaning trials. Sci. Total Environ. 408(20), 4309–4318. doi:10.1016/
dcterms.referencesAmato, F., Viana, M., Richard, A., Furger, M., Prévôt, A.S.H., et al., 2011. Size and timeresolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 11, 2917–2931. doi:10.5194/
dcterms.referencesArhami, M., Sillanpää, M., Hu, S., Olson, M.R., Schauer, J.J., et al., 2009. Size-segregated inorganic and organic components of PM in the communities of the Los Angeles Harbor. Aerosol Sci. Technol. 43(2), 145–160. doi: 10.1080/
dcterms.referencesBirmili, W., Allen, A., Bary, F., Harrison, R., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. Technol. 40(4), 1144–1153. doi: 10.1021/
dcterms.referencesBuczyńska, A.J., Krata, A., Grieken, R.V., Brown, A., Polezer, G., et al., 2014. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total Environ. 490, 134–143. doi:10.1016/
dcterms.referencesBuonanno, G., Ficco, G., Stabile, L., 2009. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Manag. 29(2), 749–755. doi:10.1016/
dcterms.referencesBuonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manag. 31(11), 2253–2262. doi:10.1016/
dcterms.referencesBorsdorff T., de Brugh J., Hu H., 2018. Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Technol., 11, 5507–
dcterms.referencesCaggiano, R., Macchiato, M., Trippetta, S., 2010. Levels, chemical composition and sources of fi ne aerosol particles (PM1) in an area of the Mediterranean basin. Sci. Total Environ. 408(4), 884–895. doi:10.1016/
dcterms.referencesCheng, H., Gong, W., Wang, Z., Zhang, F., Wang, X., et al., 2014. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 26(4), 810–817. doi:10.1016/S10010742(13)60503-3.Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A.P.Y., Mu, K., Rossi, L., Sun, K. and Viboud, C., 2020. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395–
dcterms.referencesCrilley, L.R., Ayoko, G.A., Stelcer, E., Cohen, D.D., Mazaheri, M., et al., 2014. Elemental composition of ambient fine particles in urban schools: sources of children’s exposure. Aerosol Air Qual. Res. 14(7), 1906–1916. doi:10.4209/
dcterms.referencesCusack, M., Alastuey, A., Péres, N., Pey, J., Querol, X., 2012. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010). Atmos. Chem. Phys. 12(18), 8341–8357. doi:10.5194/
dcterms.referencesCusack, M., Alastuey, A., Querol, X., 2013a. Case studies of new particle formation and evaporation processes in the western Mediterranean regional background. Atmos. Environ. 81, 651–659. doi:10.1016/
dcterms.referencesCusack, M., Pérez, N., Pey, J., Alastuey, A., Querol, X., 2013b. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmos. Chem. Phys. 13(10), 5173– 5187. doi:10.5194/
dcterms.referencesDraxler, R.R., Rolph, G.D., 2003. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD. (Website)
dcterms.referencesDrechsler, S., Uhrner, U., Lumpp, R., 2006. Sensitivity of urban and rural ammonium nitrate particulate matter to precursor emissions in Southern Germany. In: Workshop on Contribution of Natural Sources to PM Levels in Europe, JRC ISPRA, 12-13 (Website)
dcterms.referencesDuan, F.K., Liu, X.D., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 38(9), 1275–1282. doi:10.1016/
dcterms.referencesFeng, S., Gao, D., Liao, F., Zhou, F., Wang, X., 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf., 128, 67–
dcterms.referencesFuertes E., Sunyer S., Gehring, U., Porta, D., Forastiere, F., Cesaroni, G., Vrijheid, M., Guxens, M., Annesi-Maesano, I., Slama, R., Maier, D., Kogevinas, M., Bousquet, J., Chatzi, L., Lertxundi, A., Basterrechea, M., Esplugues, A., Ferrero, A., Wright, J., Mason, D., McEachan, R., Garcia-Aymerich, J., Jacquemin B., 2020. Associations between air pollution and pediatric eczema, rhinoconjunctivitis and asthma: a metaanalysis of European birth cohorts. Environ. Int., 136,
dcterms.referencesGautam S., 2020. COVID-19: air pollution remains low as people stay at home. Air Qual. Atmos. Health, 10.1007/s1186
dcterms.referencesFuruta, N., Iijima, A., Kambe, A., Sakai, K., Sato, K., 2005. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J. Environ. Monitor. 7(12), 1155–1161. doi: 10.1039/
dcterms.referencesGugamsetty, B., Wei, H., Liu, C.N., Awasthi, A., Hsu, S.C., et al., 2012. Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using Positive Matrix Factorization. Aerosol Air Qual. Res. 12, 476–491. doi:10.4209/
dcterms.referencesHassavand, M.H., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M.H., et al., 2015. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1. Sci. Total Environ. 527–528, 100–110. doi:10.1016/
dcterms.referencesHe, K.B., Yang, F.M., Ma, Y.L., Zhang, Q., Yao, X.H., et al., 2001. The characteristics of PM2.5 in Beijing, China. Atmos. Environ. 35(29), 4959–4970. doi:10.1016/S13522310(01)
dcterms.referencesHelble, J.J., 2000. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators. Fuel Process. Technol. 63(2-3), 125–147. doi:10.1016/S0378-3820(99)
dcterms.referencesHopke, P.K. (Ed.), 1991. Receptor Modeling for Air Quality Management. Elsevier Science Publishers,
dcterms.referencesHopke, P.K., 2003. A guide to Positive Matrix Factorization. Available in:
dcterms.referencesJohansson, C., Norman, M., Burman, L., 2009. Road traffic emission factors for heavy metals. Atmos. Environ. 43(31), 4681–4688. doi:10.1016/
dcterms.referencesKauppinen, E.I., Pakkanen, T.A., 1990. Coal combustion aerosols: a field study. Environ. Sci. Technol. 24(12), 1811–1818. doi:10.1021/
dcterms.referencesKupiainen, K.J., Pirjola, L., 2011. Vehicle non-exhaust emissions from the tyre–road interface – effect of stud properties, traction sanding and resuspension. Atmos. Environ. 45, 4141–4146. doi:10.1016/
dcterms.referencesLeng X.Z., Wang, J.H., Ji, H.B., Wang, Q.G., Li, H.M., Qian, X., Li, F.Y., Yang. M., 2017. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses. Chemosphere, 180, 513–
dcterms.referencesLi, H., Dai, Q., Yang, M., Li, F., Liu, X., Zhou, M., Qian, X., 2020. Heavy metals in submicronic particulate matter (PM1) from a Chinese metropolitan city predicted by machine learning models. Chemosphere 261,
dcterms.referencesLin, C. C., Chen, S. J., Huang, K. L., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 39(21), 8113–8122. doi:10.1021/
dcterms.referencesLough, G.C., Schauer, J.J., Park, J.S., Shafer, M.M., Deminter, J.T., et al., 2005. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 39(3), 826– 836. doi:10.1021/
dcterms.referencesMariani, R.L., Mello, W.Z., 2007. PM2.5-10, PM2.5 and associated water–soluble inorganic species at coastal urban site in the metropolitan region of Rio de Janeiro. Atmos. Environ. 41(13), 2887–2892. doi:10.1016/
dcterms.referencesMason, S., 1966. Principles of Geochemistry. Wiley, New
dcterms.referencesMattiuzi, C.D.P., Palagi, A.C., Teixeira, E.C., Wiegand, F., 2012. Poluição Atmosférica do Biodiesel e Estado da Arte. In: Teixera, E.C., Wiegand, F., Tedesco, M. (Eds.), Biodiesel: Impacto Ambiental Agronômico e Atmosférico. Cadernos de Planejamento e Gestão Ambiental Nº 6. FEPAM, Porto Alegre, pp. 43–
dcterms.referencesMigliavacca, D.M., Teixeira, E.C., Gervasonic, F., Conceição, R.V., Rodriguez, M.T.R., 2009. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil. J. Hazard. Mater. 171, 230–240. doi:10.1016/
dcterms.referencesMinguillón, M.C., Querol, X., Baltensperger, U., Prévôt, A.S.H., 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci. Total Environ. 427–428, 191–202. doi:10.1016/
dcterms.referencesMohiuddin, K., Strezov, V., Nelson, P.F., Stelcer, E., 2014. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos. Environ. 83, 72–79. doi:10.1016/
dcterms.referencesMoreno, T., Querol, X., Alastuey, A., Amato, F., Pey, J., et al., 2010. Effect of fireworks events on urban background trace metal aerosol concentrations: Is the cocktail worth the show? J. Hazard. Mater. 183(1–3), 945–949. doi:10.1016/
dcterms.referencesMoreno T., Querol X., Alastuey A., Reche C., Cusack M., et al., 2011. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos. Chem. Phys. 11(17), 9415–9430. doi:10.5194/
dcterms.referencesMoreno T., Kojima T., Amato F., Lucarelli F., de la Rosa J., et al., 2013. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmos. Chem. Phys. 13(3), 1411–1424. doi:10.5194/
dcterms.referencesMunir, H.S., Shaheen, N., 2008. Annual and seasonal variations of trace metals in atmospheric suspended particulate matter in Islamabad, Pakistan. Water Air Soil Poll. 190(1), 13–25. doi:10.1007/
dcterms.referencesNazir, R., Shaheen, N., Shah, M.H., 2011. Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area. Atmos. Res. 101(3), 765–772. doi:10.1016/
dcterms.referencesNinomiya, Y., Zhang, L., Sato, A., Dong, Z., 2004. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Process. Technol. 85(8–10), 1065–1088. doi:10.1016/
dcterms.referencesNiu, L., Ye, H., Xu, C., Yao, Y., Liu, W., 2015. Highly time– and size–resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere 119, 112–121. doi:10.1016/
dcterms.referencesOliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean Prod. 278, 123982. doi:10.1016/
dcterms.referencesPaatero, P., 1997. Least square formulation of robust non–negative factor analysis. Chemometrrics Intell. Lab. Syst. 37(1), 23–35. doi:10.1016/S0169-7439(96)
dcterms.referencesPaatero, P., Tapper, U., 1994. Positive matrix factorization: a non–negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. doi:10.1002/
dcterms.referencesPakkanen, T.A., Kerminen, V.M., Loukkola, K., Hillamo, R.E., Aarnio, P., et al., 2003. Size distributions of mass and chemical components in street–level and rooftop PM1 particles in Helsinki. Atmos. Environ. 37(12), 1673–1690. doi:10.1016/S13522310(03)
dcterms.referencesPandolfi, M., Cusack, M., Alastuey, A., Querol, X., 2011. Variability of aerosol optical properties in the Western Mediterranean Basin. Atmos. Chem. Phys. 11(15), 8189– 8203. doi:10.5194/
dcterms.referencesPark, S.S., Kim, Y.J., 2005. Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59(2), 217–226. doi:10.1016/
dcterms.referencesParker, J.L., Larson, R.R., Eskelson, E., Wood, E.M., Veranth, J.M., 2008. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes. Indoor Air 18(5), 386–393. doi:10.1111/
dcterms.referencesPérez, N., Pey, J., Querol, X., Alastuey, A., López, J.M., et al., 2008. Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos. Environ. 42(8), 1677–1691. doi:10.1016/
dcterms.referencesPerrone, M.G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., et al., 2013. Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ. Pollut. 176, 215–227. doi:10.1016/
dcterms.referencesPETROBRAS, 2012. Products and Services. Available in:
dcterms.referencesPey, J., Querol, X., Alastuey, A., 2009. Variation of levels and composition of PM10 and PM2.5 at insular site in the Western Mediterranean. Atmos. Res. 94(2), 285–299. doi:10.1016/
dcterms.referencesPey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North–Western Mediterranean: PM levels and composition. Atmos. Environ. 44(13), 1587–1596. doi:10.1016/
dcterms.referencesQuerol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., et al., 2001. PM10 and PM2.5 source apportionment in Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419. doi:10.1016/S1352-2310(01)
dcterms.referencesQuerol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A., Plana, F., et al., 2002. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 36(19), 3113–3125. doi:10.1016/S1352- 2310(02)
dcterms.referencesQuerol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., et al., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41(34), 7219–7231. doi:10.1016/
dcterms.referencesRagazzi, M., Tirler, W., Angelucci, G., Zardi, D., Rada, E.C., 2013. Management of atmospheric pollutants from waste incineration processes: the case of Bozen. Waste Manag. Res. 31(3), 235–240. doi:10.1177/
dcterms.referencesSaarnio, K., Frey, A., Niemi, J.V., Timonen, H., Rönkkö, T., et al., 2014. Chemical composition and size of particles in emissions of a coal–fired power plant with fuel gas desulfurization. J. Aerosol Sci. 73, 14–26. doi:10.1016/
dcterms.referencesSánchez de la Campa, A.M., de la Rosa, J.D., González-Castanedo, Y., FernándezCamacho, R., Alastuey, A., et al., 2010. High concentrations of heavy metal in PM from ceramic factories of Souther Spain. Atmos. Res. 96(4), 633–644. doi:10.1016/
dcterms.referencesSanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365. doi:10.1016/
dcterms.referencesSchauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., et al., 2006. Characterization of Metals Emitted from Motor Vehicles. Res. Rep. Health Eff. Inst. 133, 1–
dcterms.referencesSchneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6(5), 877–885. doi:10.5094/
dcterms.referencesSilva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere, 251, 126838. doi:10.1016/
dcterms.referencesSippula, O., Hokkinen, J., Puustinen, H., Yli-Pirilä, P., Jokiniemi, J., 2009. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 43(32), 4855–4864. doi:10.1016/
dcterms.referencesSolins J.P., Thorne J.H., Cadenasso M.L., 2018. Riparian canopy expansion in an urban landscape: multiple drivers of vegetation change along headwater streams near Sacramento, California Landsc. Urban Plan., 172, 37–
dcterms.referencesSörme, L., Bergbäck, B., Lohm, U., 2001. Goods in the anthroposphere as a metal emission source a case study of Stockholm, Sweden. Water Air Soil Pollut. Focus 1(3), 213– 227. doi:10.1023/
dcterms.referencesSpindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., et al., 2010. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 44(2), 164–173. doi:10.1016/j.atmosenv.20
dcterms.referencesStein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., et al., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059–2077. doi:10.1175/
dcterms.referencesSzyszkowicz M., T. Kousha, J. Castner, R. Dales., 2018. Air pollution and emergency department visits for respiratory diseases: a multi-city case crossover study. Environ. Res., 163, 263–
dcterms.referencesTao, J., Shen, Z.X., Zhu, C.S., Yue, J.H., Cao, J.J., et al., 2012. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 118, 222–231. doi:10.1016/
dcterms.referencesTeixeira, E.C., Feltes, S., Santana, E., 2008. Study of the emissions from moving sources in the metropolitan area of Porto Alegre – RS – Brazil. Quim. Nova 31, 244–248. doi:10.1590/
dcterms.referencesTeixeira, E.C., Santana, R.E., Wiegand, F., 2010. 1st Inventory of Air Emissions from Mobile Sources in the State of Rio Grande Do Sul – Base Year: 2009. Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre (in Portuguese).spa
dcterms.referencesTeixeira, E.C., Mattiuzi, C.D.P., Feltes, S., Wiegand, F., Santana, E.R.R., 2012. Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre–RS. An. Acad. Bras. Ciências 84(3), 245–261. doi:10.1590/
dcterms.referencesTeixeira, E.C., Mattiuzi, C.D.P., Agudelo-Castañeda, D., Garcia, K.O., Wiegand, F., 2013. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 185(11), 9587–9602. doi:10.1007/
dcterms.referencesUSEPA, 1994. Quality Assurance Handbook for Air Pollution Measurement Systems. In: Ambient Air Specific Methods, vol. II. US Environmental Protection Agency; US Government Printing Office, Washington, DC. Section 2,11; EPA/600/R-94/
dcterms.referencesVecchi, R., Marcazzan, G., Valli, G., Ceriani, M., Antoniazzi, C., 2004. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 38(27), 4437–4446. doi:10.1016/
dcterms.referencesVeefkind J.P., Kleipool Q., Ludewig A., Stein-Zweers D., Aben I., De Vries J., Loyola D.G., H. Nett, Van Roozendael A.M. Early Results from TROPOMI on the Copernicus Sentinel 5 Precursor. AGU Fall Meeting Abstracts,
dcterms.referencesVestenius, M., Leppanen, S., Anttila, P., Kyllonen, K., Hatakka, J., et al., 2011. Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmos. Environ. 45(20), 3391–3399. doi:10.1016/
dcterms.referencesWåhlin, P., Berkowicz, R., Palmgren F., 2006. Characterization of traffic–generated particulate matter in Copenhagen. Atmos. Environ. 40(12), 2151–2159. doi:10.1016/
dcterms.referencesWang, Y., Zhuang, G.S., Tang, A.H., Yuan, H., Sun, Y.L., et al., 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 39(21), 3771–3784. doi:10.1016/
dcterms.referencesWHO, 2013. Review of evidence on health aspects of air pollution – REVIHAAP Project. Technical Report. World Health Organization. Available at:
dcterms.referencesWidory, D., Liu, X., Dong, S., 2010. Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Environ. 44(30), 3679–3687. doi:10.1016/
dcterms.referencesWiseman, C.L.S., Zereini, F., Püttmann, W., 2013. Traffic–related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 442, 86–95. doi:10.1016/
dcterms.referencesWiseman, C.L.S., Zereini, F., 2014. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 89, 282–289. doi:10.1016/
dcterms.referencesWitt, M.L.I., Meheran, N., Mather, T.A., de Hoog, J.C.M., Pyle, D.M., 2010. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK. Atmos. Environ. 44(12), 1524–1538. doi:10.1016/
dcterms.referencesWu, G., Xu, B., Yao, T., Zhang, C., Gao, S., 2009. Heavy metals in aerosol samples from the Eastern Pamirs collected 2004–2006. Atmos. Res. 93(4), 784–792. doi:10.1016/
dcterms.referencesWilliams A.P., Abatzoglou J.T., Gershunov A., Guzman-Morales J., Bishop D.A., Balch J.K., Lettenmaier D.P., 2019. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7 (8) , 892–
dcterms.referencesYoo, J.-I., Seo, Y.-C., Shinagawa, T., 2005. Particle–size distributions and heavy metal partitioning in emission gas from different coal–fired power plants. Environ. Eng. Sci. 22(2), 272–279. doi:10.1089/
dcterms.referencesZhang, Y.Q., Fang, J.Y., Mao, F.Y., Ding, Z., Xiang, Q.Q., Wang, W., 2020. Age- and season-specific effects of ambient particles (PM1, PM2.5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 246,
dcterms.referencesZheng, N., Liu, J.S., Wang, Q.C., Liang, Z.Z., 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 408(4), 726–733. doi:10.1016/
dcterms.referencesZhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: spatial variations, sources, and health implications. J. Environ. Sci. 26(1), 205–213. doi:10.1016/S1001- 0742(13)

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal