Show simple item record

dc.creatorSchneider, Ismael
dc.creatorTeixeira, Elba C.
dc.creatorDotto, Guilherme Luiz
dc.creatorDiana
dc.creatorYang, Xue-cheng
dc.creatorSilva Oliveira, Luis Felipe
dc.date.accessioned2021-01-04T19:11:36Z
dc.date.available2021-01-04T19:11:36Z
dc.date.issued2020-12-30
dc.identifier.issn1674-9871
dc.identifier.urihttps://hdl.handle.net/11323/7651
dc.description.abstractAir pollution has become a major problem in urban areas due to increasing industrialization and urbanization. In this study ambient concentrations of PM1 and metal concentrations as well as source contributions were identified and quantified by using Positive Matrix Factorization (PMF) in receptor modeling in the Metropolitan Area of Porto Alegre, Brazil. The PM1 samples were collected on PTFE filters from December 2012 to December 2014 in two sampling sites. Major ion and trace element concentrations were assessed. The average concentrations were 12.8 and 15.2 μg/m3 for Canoas and Sapucaia do Sul sites, respectively. Major ion contributions of PM1 were secondary pollutants such as sulfate and nitrate. Trace elements, especially Cu, Pb, Zn, Cd, and Ni also made important contributions which are directly associated with anthropogenic contributions. Our results show significantly higher levels in winter than in summer. Most of the PM1 and the analyzed PM species and elements originated from anthropogenic sources, especially road traffic, combustion processes and industrial activities, which are grouped in 7 major contributing sources. A back-trajectory analysis showed that the long-range transport of pollutants was not relevant in relation to the contribution to PM1 and metal concentrations. This work highlights the importance of urban planning to reduce human health exposure to traffic and industrial emissions, combined with awareness-raising actions for citizens concerning the impact of indoor sources.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceGeoscience Frontiersspa
dc.subjectPM1spa
dc.subjectTrace elementsspa
dc.subjectSource apportionmentspa
dc.subjectPMFspa
dc.subjectBack trajectoryspa
dc.titleGeochemical study of submicron particulate matter (PM1) in a metropolitan areaspa
dc.typearticlespa
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., 2014. Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmos. Environ. 96, 186–200. doi:10.1016/j.atmosenv.2014.07.030.spa
dcterms.referencesAldabe J., Elustondo D., Santamaría C., Lasheras E., Pandolfi M., et al., 2011. Chemical characterization and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102(1-2), 191–205. doi: 10.1016/j.atmosres.2011.07.003.spa
dcterms.referencesAlmeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., 2006. Approaching PM2.5 and PM2.5–10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci. Total Environ. 368(2-3), 663– 674. doi:10.1016/j.scitotenv.2006.03.031.spa
dcterms.referencesAmato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., et al., 2009. Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmos. Environ. 43(17), 2770–2780. doi:10.1016/j.atmosenv.2009.02.039.spa
dcterms.referencesAmato, F., Nava, S., Lucarelli, F., Querol, X., Alastuey, A., et al., 2010. A comprehensive assessment of PM emissions from paved roads: Real-world Emission Factors and intense street cleaning trials. Sci. Total Environ. 408(20), 4309–4318. doi:10.1016/j.scitotenv.2010.06.008.spa
dcterms.referencesAmato, F., Viana, M., Richard, A., Furger, M., Prévôt, A.S.H., et al., 2011. Size and timeresolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 11, 2917–2931. doi:10.5194/acp-11-2917-2011.spa
dcterms.referencesArhami, M., Sillanpää, M., Hu, S., Olson, M.R., Schauer, J.J., et al., 2009. Size-segregated inorganic and organic components of PM in the communities of the Los Angeles Harbor. Aerosol Sci. Technol. 43(2), 145–160. doi: 10.1080/02786820802534757.spa
dcterms.referencesBirmili, W., Allen, A., Bary, F., Harrison, R., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. Technol. 40(4), 1144–1153. doi: 10.1021/es0486925.spa
dcterms.referencesBuczyńska, A.J., Krata, A., Grieken, R.V., Brown, A., Polezer, G., et al., 2014. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total Environ. 490, 134–143. doi:10.1016/j.scitotenv.2014.04.102.spa
dcterms.referencesBuonanno, G., Ficco, G., Stabile, L., 2009. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Manag. 29(2), 749–755. doi:10.1016/j.wasman.2008.06.029.spa
dcterms.referencesBuonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manag. 31(11), 2253–2262. doi:10.1016/j.wasman.2011.06.017.spa
dcterms.referencesBorsdorff T., de Brugh J., Hu H., 2018. Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Technol., 11, 5507– 5518.spa
dcterms.referencesCaggiano, R., Macchiato, M., Trippetta, S., 2010. Levels, chemical composition and sources of fi ne aerosol particles (PM1) in an area of the Mediterranean basin. Sci. Total Environ. 408(4), 884–895. doi:10.1016/j.scitotenv.2009.10.064.spa
dcterms.referencesCheng, H., Gong, W., Wang, Z., Zhang, F., Wang, X., et al., 2014. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 26(4), 810–817. doi:10.1016/S10010742(13)60503-3.Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A.P.Y., Mu, K., Rossi, L., Sun, K. and Viboud, C., 2020. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395–400.spa
dcterms.referencesCrilley, L.R., Ayoko, G.A., Stelcer, E., Cohen, D.D., Mazaheri, M., et al., 2014. Elemental composition of ambient fine particles in urban schools: sources of children’s exposure. Aerosol Air Qual. Res. 14(7), 1906–1916. doi:10.4209/aaqr.2014.04.0077.spa
dcterms.referencesCusack, M., Alastuey, A., Péres, N., Pey, J., Querol, X., 2012. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010). Atmos. Chem. Phys. 12(18), 8341–8357. doi:10.5194/acp-12-8341-2012.spa
dcterms.referencesCusack, M., Alastuey, A., Querol, X., 2013a. Case studies of new particle formation and evaporation processes in the western Mediterranean regional background. Atmos. Environ. 81, 651–659. doi:10.1016/j.atmosenv.2013.09.025.spa
dcterms.referencesCusack, M., Pérez, N., Pey, J., Alastuey, A., Querol, X., 2013b. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmos. Chem. Phys. 13(10), 5173– 5187. doi:10.5194/acp-13-5173-2013.spa
dcterms.referencesDraxler, R.R., Rolph, G.D., 2003. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD. (Website) http://ready.arl.noaa.gov/HYSPLIT.php.spa
dcterms.referencesDrechsler, S., Uhrner, U., Lumpp, R., 2006. Sensitivity of urban and rural ammonium nitrate particulate matter to precursor emissions in Southern Germany. In: Workshop on Contribution of Natural Sources to PM Levels in Europe, JRC ISPRA, 12-13 (Website) http://natsources.jrc.it/.spa
dcterms.referencesDuan, F.K., Liu, X.D., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 38(9), 1275–1282. doi:10.1016/j.atmosenv.2003.11.037.spa
dcterms.referencesFeng, S., Gao, D., Liao, F., Zhou, F., Wang, X., 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf., 128, 67–74.spa
dcterms.referencesFuertes E., Sunyer S., Gehring, U., Porta, D., Forastiere, F., Cesaroni, G., Vrijheid, M., Guxens, M., Annesi-Maesano, I., Slama, R., Maier, D., Kogevinas, M., Bousquet, J., Chatzi, L., Lertxundi, A., Basterrechea, M., Esplugues, A., Ferrero, A., Wright, J., Mason, D., McEachan, R., Garcia-Aymerich, J., Jacquemin B., 2020. Associations between air pollution and pediatric eczema, rhinoconjunctivitis and asthma: a metaanalysis of European birth cohorts. Environ. Int., 136, 105474.spa
dcterms.referencesGautam S., 2020. COVID-19: air pollution remains low as people stay at home. Air Qual. Atmos. Health, 10.1007/s1186 9-020-00842-6.spa
dcterms.referencesFuruta, N., Iijima, A., Kambe, A., Sakai, K., Sato, K., 2005. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004. J. Environ. Monitor. 7(12), 1155–1161. doi: 10.1039/B513988K.spa
dcterms.referencesGugamsetty, B., Wei, H., Liu, C.N., Awasthi, A., Hsu, S.C., et al., 2012. Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using Positive Matrix Factorization. Aerosol Air Qual. Res. 12, 476–491. doi:10.4209/aaqr.2012.04.0084.spa
dcterms.referencesHassavand, M.H., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M.H., et al., 2015. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1. Sci. Total Environ. 527–528, 100–110. doi:10.1016/j.scitotenv.2015.05.001.spa
dcterms.referencesHe, K.B., Yang, F.M., Ma, Y.L., Zhang, Q., Yao, X.H., et al., 2001. The characteristics of PM2.5 in Beijing, China. Atmos. Environ. 35(29), 4959–4970. doi:10.1016/S13522310(01)00301-6.spa
dcterms.referencesHelble, J.J., 2000. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators. Fuel Process. Technol. 63(2-3), 125–147. doi:10.1016/S0378-3820(99)00093-4.spa
dcterms.referencesHopke, P.K. (Ed.), 1991. Receptor Modeling for Air Quality Management. Elsevier Science Publishers, Amsterdam.spa
dcterms.referencesHopke, P.K., 2003. A guide to Positive Matrix Factorization. Available in: http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf.spa
dcterms.referencesJohansson, C., Norman, M., Burman, L., 2009. Road traffic emission factors for heavy metals. Atmos. Environ. 43(31), 4681–4688. doi:10.1016/j.atmosenv.2008.10.024.spa
dcterms.referencesKauppinen, E.I., Pakkanen, T.A., 1990. Coal combustion aerosols: a field study. Environ. Sci. Technol. 24(12), 1811–1818. doi:10.1021/es00082a004.spa
dcterms.referencesKupiainen, K.J., Pirjola, L., 2011. Vehicle non-exhaust emissions from the tyre–road interface – effect of stud properties, traction sanding and resuspension. Atmos. Environ. 45, 4141–4146. doi:10.1016/j.atmosenv.2011.05.027.spa
dcterms.referencesLeng X.Z., Wang, J.H., Ji, H.B., Wang, Q.G., Li, H.M., Qian, X., Li, F.Y., Yang. M., 2017. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses. Chemosphere, 180, 513–522.spa
dcterms.referencesLi, H., Dai, Q., Yang, M., Li, F., Liu, X., Zhou, M., Qian, X., 2020. Heavy metals in submicronic particulate matter (PM1) from a Chinese metropolitan city predicted by machine learning models. Chemosphere 261, 127571.spa
dcterms.referencesLin, C. C., Chen, S. J., Huang, K. L., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 39(21), 8113–8122. doi:10.1021/es048182a.spa
dcterms.referencesLough, G.C., Schauer, J.J., Park, J.S., Shafer, M.M., Deminter, J.T., et al., 2005. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 39(3), 826– 836. doi:10.1021/es048715f.spa
dcterms.referencesMariani, R.L., Mello, W.Z., 2007. PM2.5-10, PM2.5 and associated water–soluble inorganic species at coastal urban site in the metropolitan region of Rio de Janeiro. Atmos. Environ. 41(13), 2887–2892. doi:10.1016/j.atmosenv.2006.12.009.spa
dcterms.referencesMason, S., 1966. Principles of Geochemistry. Wiley, New York.spa
dcterms.referencesMattiuzi, C.D.P., Palagi, A.C., Teixeira, E.C., Wiegand, F., 2012. Poluição Atmosférica do Biodiesel e Estado da Arte. In: Teixera, E.C., Wiegand, F., Tedesco, M. (Eds.), Biodiesel: Impacto Ambiental Agronômico e Atmosférico. Cadernos de Planejamento e Gestão Ambiental Nº 6. FEPAM, Porto Alegre, pp. 43–67.spa
dcterms.referencesMigliavacca, D.M., Teixeira, E.C., Gervasonic, F., Conceição, R.V., Rodriguez, M.T.R., 2009. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil. J. Hazard. Mater. 171, 230–240. doi:10.1016/j.jhazmat.2009.05.135.spa
dcterms.referencesMinguillón, M.C., Querol, X., Baltensperger, U., Prévôt, A.S.H., 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci. Total Environ. 427–428, 191–202. doi:10.1016/j.scitotenv.2012.04.030.spa
dcterms.referencesMohiuddin, K., Strezov, V., Nelson, P.F., Stelcer, E., 2014. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos. Environ. 83, 72–79. doi:10.1016/j.atmosenv.2013.11.011.spa
dcterms.referencesMoreno, T., Querol, X., Alastuey, A., Amato, F., Pey, J., et al., 2010. Effect of fireworks events on urban background trace metal aerosol concentrations: Is the cocktail worth the show? J. Hazard. Mater. 183(1–3), 945–949. doi:10.1016/j.jhazmat.2010.07.082.spa
dcterms.referencesMoreno T., Querol X., Alastuey A., Reche C., Cusack M., et al., 2011. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos. Chem. Phys. 11(17), 9415–9430. doi:10.5194/acp-11-9415-2011.spa
dcterms.referencesMoreno T., Kojima T., Amato F., Lucarelli F., de la Rosa J., et al., 2013. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmos. Chem. Phys. 13(3), 1411–1424. doi:10.5194/acp-13-1411-2013.spa
dcterms.referencesMunir, H.S., Shaheen, N., 2008. Annual and seasonal variations of trace metals in atmospheric suspended particulate matter in Islamabad, Pakistan. Water Air Soil Poll. 190(1), 13–25. doi:10.1007/s11270-007-9575-x.spa
dcterms.referencesNazir, R., Shaheen, N., Shah, M.H., 2011. Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area. Atmos. Res. 101(3), 765–772. doi:10.1016/j.atmosres.2011.05.003.spa
dcterms.referencesNinomiya, Y., Zhang, L., Sato, A., Dong, Z., 2004. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Process. Technol. 85(8–10), 1065–1088. doi:10.1016/j.fuproc.2003.10.012.spa
dcterms.referencesNiu, L., Ye, H., Xu, C., Yao, Y., Liu, W., 2015. Highly time– and size–resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere 119, 112–121. doi:10.1016/j.chemosphere.2014.05.062.spa
dcterms.referencesOliveira, M.L.S., Flores, E.M.M., Dotto, G.L., Neckel, A., Silva, L.F.O., 2021. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): the protagonist of black crusts produced on historic buildings. J. Clean Prod. 278, 123982. doi:10.1016/j.jclepro.2020.123982.spa
dcterms.referencesPaatero, P., 1997. Least square formulation of robust non–negative factor analysis. Chemometrrics Intell. Lab. Syst. 37(1), 23–35. doi:10.1016/S0169-7439(96)00044-5.spa
dcterms.referencesPaatero, P., Tapper, U., 1994. Positive matrix factorization: a non–negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. doi:10.1002/env.3170050203.spa
dcterms.referencesPakkanen, T.A., Kerminen, V.M., Loukkola, K., Hillamo, R.E., Aarnio, P., et al., 2003. Size distributions of mass and chemical components in street–level and rooftop PM1 particles in Helsinki. Atmos. Environ. 37(12), 1673–1690. doi:10.1016/S13522310(03)00011-6.spa
dcterms.referencesPandolfi, M., Cusack, M., Alastuey, A., Querol, X., 2011. Variability of aerosol optical properties in the Western Mediterranean Basin. Atmos. Chem. Phys. 11(15), 8189– 8203. doi:10.5194/acpd-11-14091-2011.spa
dcterms.referencesPark, S.S., Kim, Y.J., 2005. Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59(2), 217–226. doi:10.1016/j.chemosphere.2004.11.001.spa
dcterms.referencesParker, J.L., Larson, R.R., Eskelson, E., Wood, E.M., Veranth, J.M., 2008. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes. Indoor Air 18(5), 386–393. doi:10.1111/j.1600-0668.2008.00539.x.spa
dcterms.referencesPérez, N., Pey, J., Querol, X., Alastuey, A., López, J.M., et al., 2008. Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos. Environ. 42(8), 1677–1691. doi:10.1016/j.atmosenv.2007.11.034.spa
dcterms.referencesPerrone, M.G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., et al., 2013. Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ. Pollut. 176, 215–227. doi:10.1016/j.envpol.2013.01.012.spa
dcterms.referencesPETROBRAS, 2012. Products and Services. Available in: http://www.petrobras.com.br/pt/produtos/para-voce/nas-ruas/.spa
dcterms.referencesPey, J., Querol, X., Alastuey, A., 2009. Variation of levels and composition of PM10 and PM2.5 at insular site in the Western Mediterranean. Atmos. Res. 94(2), 285–299. doi:10.1016/j.atmosres.2009.06.006.spa
dcterms.referencesPey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North–Western Mediterranean: PM levels and composition. Atmos. Environ. 44(13), 1587–1596. doi:10.1016/j.atmosenv.2010.02.005.spa
dcterms.referencesQuerol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., et al., 2001. PM10 and PM2.5 source apportionment in Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419. doi:10.1016/S1352-2310(01)00361-2.spa
dcterms.referencesQuerol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A., Plana, F., et al., 2002. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 36(19), 3113–3125. doi:10.1016/S1352- 2310(02)00257-1.spa
dcterms.referencesQuerol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., et al., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41(34), 7219–7231. doi:10.1016/j.atmosenv.2007.05.022.spa
dcterms.referencesRagazzi, M., Tirler, W., Angelucci, G., Zardi, D., Rada, E.C., 2013. Management of atmospheric pollutants from waste incineration processes: the case of Bozen. Waste Manag. Res. 31(3), 235–240. doi:10.1177/0734242X12472707.spa
dcterms.referencesSaarnio, K., Frey, A., Niemi, J.V., Timonen, H., Rönkkö, T., et al., 2014. Chemical composition and size of particles in emissions of a coal–fired power plant with fuel gas desulfurization. J. Aerosol Sci. 73, 14–26. doi:10.1016/j.jaerosci.2014.03.004.spa
dcterms.referencesSánchez de la Campa, A.M., de la Rosa, J.D., González-Castanedo, Y., FernándezCamacho, R., Alastuey, A., et al., 2010. High concentrations of heavy metal in PM from ceramic factories of Souther Spain. Atmos. Res. 96(4), 633–644. doi:10.1016/j.atmosres.2010.02.011.spa
dcterms.referencesSanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365. doi:10.1016/j.atmosenv.2014.05.023.spa
dcterms.referencesSchauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., et al., 2006. Characterization of Metals Emitted from Motor Vehicles. Res. Rep. Health Eff. Inst. 133, 1–76.spa
dcterms.referencesSchneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6(5), 877–885. doi:10.5094/APR.2015.097.spa
dcterms.referencesSilva, L.F.O., Pinto, D., Neckel, A., Dotto, G.L., Oliveira, M.L.S., 2020. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere, 251, 126838. doi:10.1016/j.chemosphere.2020.126838.spa
dcterms.referencesSippula, O., Hokkinen, J., Puustinen, H., Yli-Pirilä, P., Jokiniemi, J., 2009. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 43(32), 4855–4864. doi:10.1016/j.atmosenv.2009.07.022.spa
dcterms.referencesSolins J.P., Thorne J.H., Cadenasso M.L., 2018. Riparian canopy expansion in an urban landscape: multiple drivers of vegetation change along headwater streams near Sacramento, California Landsc. Urban Plan., 172, 37–46.spa
dcterms.referencesSörme, L., Bergbäck, B., Lohm, U., 2001. Goods in the anthroposphere as a metal emission source a case study of Stockholm, Sweden. Water Air Soil Pollut. Focus 1(3), 213– 227. doi:10.1023/A:1017516523915.spa
dcterms.referencesSpindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., et al., 2010. A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 44(2), 164–173. doi:10.1016/j.atmosenv.20 09.10.015.spa
dcterms.referencesStein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., et al., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059–2077. doi:10.1175/BAMS-D-14-00110.1.spa
dcterms.referencesSzyszkowicz M., T. Kousha, J. Castner, R. Dales., 2018. Air pollution and emergency department visits for respiratory diseases: a multi-city case crossover study. Environ. Res., 163, 263–269.spa
dcterms.referencesTao, J., Shen, Z.X., Zhu, C.S., Yue, J.H., Cao, J.J., et al., 2012. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 118, 222–231. doi:10.1016/j.atmosres.2012.06.025.spa
dcterms.referencesTeixeira, E.C., Feltes, S., Santana, E., 2008. Study of the emissions from moving sources in the metropolitan area of Porto Alegre – RS – Brazil. Quim. Nova 31, 244–248. doi:10.1590/S0100-40422008000200010.spa
dcterms.referencesTeixeira, E.C., Santana, R.E., Wiegand, F., 2010. 1st Inventory of Air Emissions from Mobile Sources in the State of Rio Grande Do Sul – Base Year: 2009. Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre (in Portuguese).spa
dcterms.referencesTeixeira, E.C., Mattiuzi, C.D.P., Feltes, S., Wiegand, F., Santana, E.R.R., 2012. Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre–RS. An. Acad. Bras. Ciências 84(3), 245–261. doi:10.1590/S0001-37652012000300008.spa
dcterms.referencesTeixeira, E.C., Mattiuzi, C.D.P., Agudelo-Castañeda, D., Garcia, K.O., Wiegand, F., 2013. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 185(11), 9587–9602. doi:10.1007/s10661-013-3276-2.spa
dcterms.referencesUSEPA, 1994. Quality Assurance Handbook for Air Pollution Measurement Systems. In: Ambient Air Specific Methods, vol. II. US Environmental Protection Agency; US Government Printing Office, Washington, DC. Section 2,11; EPA/600/R-94/038a.spa
dcterms.referencesVecchi, R., Marcazzan, G., Valli, G., Ceriani, M., Antoniazzi, C., 2004. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 38(27), 4437–4446. doi:10.1016/j.atmosenv.2004.05.029.spa
dcterms.referencesVeefkind J.P., Kleipool Q., Ludewig A., Stein-Zweers D., Aben I., De Vries J., Loyola D.G., H. Nett, Van Roozendael A.M. Early Results from TROPOMI on the Copernicus Sentinel 5 Precursor. AGU Fall Meeting Abstracts, 2017.spa
dcterms.referencesVestenius, M., Leppanen, S., Anttila, P., Kyllonen, K., Hatakka, J., et al., 2011. Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmos. Environ. 45(20), 3391–3399. doi:10.1016/j.atmosenv.2011.03.050.spa
dcterms.referencesWåhlin, P., Berkowicz, R., Palmgren F., 2006. Characterization of traffic–generated particulate matter in Copenhagen. Atmos. Environ. 40(12), 2151–2159. doi:10.1016/j.atmosenv.2005.11.049.spa
dcterms.referencesWang, Y., Zhuang, G.S., Tang, A.H., Yuan, H., Sun, Y.L., et al., 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 39(21), 3771–3784. doi:10.1016/j.atmosenv.2005.03.013.spa
dcterms.referencesWHO, 2013. Review of evidence on health aspects of air pollution – REVIHAAP Project. Technical Report. World Health Organization. Available at: http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Finaltechnical-report-final-version.pdf.spa
dcterms.referencesWidory, D., Liu, X., Dong, S., 2010. Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Environ. 44(30), 3679–3687. doi:10.1016/j.atmosenv.2010.06.036.spa
dcterms.referencesWiseman, C.L.S., Zereini, F., Püttmann, W., 2013. Traffic–related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 442, 86–95. doi:10.1016/j.scitotenv.2012.10.051.spa
dcterms.referencesWiseman, C.L.S., Zereini, F., 2014. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 89, 282–289. doi:10.1016/j.atmosenv.2014.02.055.spa
dcterms.referencesWitt, M.L.I., Meheran, N., Mather, T.A., de Hoog, J.C.M., Pyle, D.M., 2010. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK. Atmos. Environ. 44(12), 1524–1538. doi:10.1016/j.atmosenv.2010.01.008.spa
dcterms.referencesWu, G., Xu, B., Yao, T., Zhang, C., Gao, S., 2009. Heavy metals in aerosol samples from the Eastern Pamirs collected 2004–2006. Atmos. Res. 93(4), 784–792. doi:10.1016/j.atmosres.2009.03.011.spa
dcterms.referencesWilliams A.P., Abatzoglou J.T., Gershunov A., Guzman-Morales J., Bishop D.A., Balch J.K., Lettenmaier D.P., 2019. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7 (8) , 892–910.spa
dcterms.referencesYoo, J.-I., Seo, Y.-C., Shinagawa, T., 2005. Particle–size distributions and heavy metal partitioning in emission gas from different coal–fired power plants. Environ. Eng. Sci. 22(2), 272–279. doi:10.1089/ees.2005.22.272.spa
dcterms.referencesZhang, Y.Q., Fang, J.Y., Mao, F.Y., Ding, Z., Xiang, Q.Q., Wang, W., 2020. Age- and season-specific effects of ambient particles (PM1, PM2.5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 246, 125723.spa
dcterms.referencesZheng, N., Liu, J.S., Wang, Q.C., Liang, Z.Z., 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 408(4), 726–733. doi:10.1016/j.scitotenv.2009.10.075.spa
dcterms.referencesZhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: spatial variations, sources, and health implications. J. Environ. Sci. 26(1), 205–213. doi:10.1016/S1001- 0742(13)60399-X.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S167498712030270X#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gsf.2020.12.011


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal