Show simple item record

dc.creatoramelec, viloria
dc.creatorLizardo Zelaya, Nelson Alberto
dc.creatorVarela, Noel
dc.description.abstractOne of the tasks of great interest within process mining is the discovery of business process models, which consists of using an event log as input and producing a business process model by analyzing the data contained in the log and applying a process mining method, task and/or technique. The discovery allows the identification of the behaviors contained in the cases of the event log in order to detect possible deviations and/or validate that the business process is executed according to the business requirements. This paper presents an approach based on unsupervised learning techniques for the grouping of traces to generate simpler and more understandable models. The algorithms implemented for clustering are K-means, hierarchical agglomerative and density-based spatial clustering of applications with noise (DBSCAN).spa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceProcedia Computer Sciencespa
dc.subjectTrace groupingspa
dc.subjectData miningspa
dc.subjectUnsupervised learning techniquesspa
dc.titleUnsupervised learning algorithms applied to grouping problemsspa
dcterms.references[1] Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms (Vol. 9, p. 103).
dcterms.references[2] Albert, S., Teletin, M., & Czibula, G. (2018). Analysing protein data using unsupervised learning techniques. Int. J. Innovative Comput. Inf. Control, 14(3),
dcterms.references[3] Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms' knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115,
dcterms.references[4] Banerjee, N., Giannetsos, T., Panaousis, E., & Took, C. C. (2018, July). Unsupervised learning for trustworthy IoT. In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-8).
dcterms.references[5] Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Ieee Access, 5,
dcterms.references[6] Chauhan, R., Kaur, H., & Puri, R. (2017). An Empirical Analysis of Unsupervised Learning Approach on Medical Databases. In Emerging Trends in Electrical, Communications and Information Technologies (pp. 63-70). Springer,
dcterms.references[7] Srinivas, C., & Rao, C. G. (2019, June). A novel approach for unsupervised learning of software components. In Proceedings of the 5th International Conference on Engineering and MIS (1-6).spa
dcterms.references[8] Fu, W., & Menzies, T. (2017, August). Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 72-83).spa
dcterms.references[9] Packianather, M. S., Davies, A., Harraden, S., Soman, S., & White, J. (2017). Data mining techniques applied to a manufacturing SME. Procedia CIRP, 62,
dcterms.references[10] Bokhari, S. M. A., & Khan, S. A. (2016). Applying Supervised and Unsupervised Learning Techniques on Dental Patients’ Records. In Emerging Trends and Advanced Technologies for Computational Intelligence (pp. 83-102). Springer,
dcterms.references[11] Unnisa, M., Ameen, A., Raziuddin, S. (2016). Opinion mining on twitter data using unsupervised learning technique. International Journal of Computer Applications, 148(12),
dcterms.references[12] Henkel, J., Lahiri, S. K., Liblit, B., & Reps, T. (2019). Enabling Open-World Specification Mining via Unsupervised Learning. arXiv preprint
dcterms.references[13] Viloria, A., Guerrero, I. M., Caraballo, H. M., Llinas, N. O., Valero, L., Palma, H. H., … Lezama, O. B. P. (2019). Effect on the demand and stock returns: Cross-sectional of big data and time-series analysis. In Communications in Computer and Information Science (Vol. 1122 CCIS, pp. 211–220). Springer.
dcterms.references[14] Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. (2016, September). Event abstraction for process mining using supervised learning techniques. In Proceedings of SAI Intelligent Systems Conference (pp. 251-269). Springer,
dcterms.references[15] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal