Mostrar el registro sencillo del ítem

dc.contributor.authorVarela, Noelspa
dc.contributor.authorComas-González, Zoespa
dc.contributor.authorTernera-Muñoz, Yesith Rspa
dc.contributor.authorEsmeral-Romero, Ernesto Fspa
dc.contributor.authorLizardo Zelaya, Nelson Albertospa
dc.date.accessioned2021-01-05T21:45:46Z
dc.date.available2021-01-05T21:45:46Z
dc.date.issued2020
dc.identifier.issn1877-0509spa
dc.identifier.urihttps://hdl.handle.net/11323/7660spa
dc.description.abstractSince 2006, deep structured learning, or more commonly called deep learning or hierarchical learning, has become a new area of research in machine learning. In recent years, techniques developed from deep learning research have impacted on a wide range of information and particularly image processing studies, within traditional and new fields, including key aspects of machine learning and artificial intelligence. This paper proposes an alternative scheme for training data management in CNNs, consisting of selective-adaptive data sampling. By means of experiments with the CIFAR10 database for image classification.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceProcedia Computer Sciencespa
dc.subjectDynamic trainingspa
dc.subjectDeep convolutional networksspa
dc.subjectImage classificationspa
dc.titleMethod for classifying images in databases through deep convolutional networksspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1877050920317014spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.procs.2020.07.022spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Singh, R., Khurana, R., Kushwaha, A. K. S., & Srivastava, R. (2020). Combining CNN streams of dynamic image and depth data for action recognition. Multimedia Systems, 1-10.spa
dc.relation.references[2] Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. arXiv preprint arXiv:1902.05967.spa
dc.relation.references[3] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer. https://doi.org/10.1007/978-981-32-9889-7_5.spa
dc.relation.references[4] Zheng, Q., Yang, M., Tian, X., Jiang, N., & Wang, D. (2020). A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discrete Dynamics in Nature and Society, 2020.spa
dc.relation.references[5] Haque, N., Reddy, N. D., & Krishna, K. M. (2017). Joint semantic and motion segmentation for dynamic scenes using deep convolutional networks. arXiv preprint arXiv:1704.08331.spa
dc.relation.references[6] Wang, H. M. X. (2019). Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization. arXiv preprint arXiv:1902.05967.spa
dc.relation.references[7] Tang, M., Liu, Y., & Durlofsky, L. J. (2020). A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. Journal of Computational Physics, 109456.spa
dc.relation.references[8] Yang, J., Liang, J., Shen, H., Wang, K., Rosin, P. L., & Yang, M. H. (2018). Dynamic match kernel with deep convolutional features for image retrieval. IEEE Transactions on Image Processing, 27(11), 5288-5302.spa
dc.relation.references[9] Popov, V., Shakev, N., Ahmed, S., & Toplaov, A. (2018, September). Recognition of Dynamic Targets using a Deep Convolutional Neural Network. In ANNA'18; Advances in Neural Networks and Applications 2018 (pp. 1-6). VDE.spa
dc.relation.references[10] Aimone, J. B., & Severa, W. M. (2017). Context-modulation of hippocampal dynamics and deep convolutional networks. arXiv preprint arXiv:1711.09876.spa
dc.relation.references[11] Nah, S., Hyun Kim, T., & Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3883-3891).spa
dc.relation.references[12] Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recognition, 97, 107000.spa
dc.relation.references[13] Mo, S., Zhu, Y., Zabaras, N., Shi, X., & Wu, J. (2019). Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resources Research, 55(1), 703-728.spa
dc.relation.references[14] Viloria, A., Varela, N., Lezama, O. B. P., Llinás, N. O., Flores, Y., Palma, H. H., … Marín-González, F. (2020). Classification of Digitized Documents Applying Neural Networks. In Lecture Notes in Electrical Engineering (Vol. 637, pp. 213–220). Springer. https://doi.org/10.1007/978-981-15-2612-1_20.spa
dc.relation.references[15] Shao, R., Lan, X., & Yuen, P. C. (2017, October). Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing. In 2017 IEEE International Joint Conference on Biometrics (IJCB) (pp. 748-755). IEEE.spa
dc.relation.references[16] Bak, C., Erdem, A., & Erdem, E. (2016). Two-stream convolutional networks for dynamic saliency prediction. arXiv preprint arXiv:1607.04730, 2(3), 6.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal