Show simple item record

dc.contributor.authoramelec, viloria
dc.contributor.authorPineda Lezama, Omar Bonerge
dc.contributor.authorCabrera, Danelys
dc.description.abstractThis paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceProcedia Computer Sciencespa
dc.subjectNeural networksspa
dc.subjectIrrigation controlspa
dc.subjectInstrumentation and image analysisspa
dc.titleInspection process for dimensioning through images and fuzzy logicspa
dc.typeArtículo de revistaspa
dcterms.references[1] Zhang, C., Craine, W. A., McGee, R. J., Vandemark, G. J., Davis, J. B., Brown, J., ... & Sankaran, S. (2020). Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops. Sensors, 20(5),
dcterms.references[2] Zhang, F., Zhang, X.: Classification and Quality Evaluation of Tobacco leaves Based in Image Processing and Fuzzy Comprehensive Evaluation. Sensors. 11(3), pp. 2369–2384 (2011)spa
dcterms.references[3] Mittal, P., Saini, R. K., & Jain, N. K. (2019). Image enhancement using fuzzy logic techniques. In Soft Computing: Theories and Applications (pp. 537-546). Springer,
dcterms.references[4] Ramya, H. R., & Sujatha, B. K. (2016, October). A novel approach for medical image fusion using fuzzy logic type-2. In 2016 International Conference on Circuits, Controls, Communications and Computing (I4C) (pp. 1-5).
dcterms.references[5] Pekaslan, D., Garibaldi, J. M., & Wagner, C. (2018, October). Noise parameter estimation for non-singleton fuzzy logic systems. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2960-2965).
dcterms.references[6] Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence, ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham (2018)spa
dcterms.references[7] Bora, D. J., & Thakur, R. S. (2018). An Efficient Technique for Medical Image Enhancement Based on Interval Type-2 Fuzzy Set Logic. In Progress in Computing, Analytics and Networking (pp. 667-678). Springer,
dcterms.references[8] Gonzalez, C. I., Melin, P., Castro, J. R., Castillo, O., & Mendoza, O. (2016). Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing, 47,
dcterms.references[9] Reyes, D., Álvarez, A., Rincón, E. J., Valderrama, J., Noradino, P., & Méndez, G. M. (2017, October). A PID using a non-singleton fuzzy logic system type 1 to control a second-order system. In North American Fuzzy Information Processing Society Annual Conference (pp. 264- 269). Springer,
dcterms.references[10] Sv, A. K., & Srivatsa, S. K. (2018). An image fusion technique based on sparse wavelet transform and non-singleton type-2 FNN techniques. TAGA J, 14,
dcterms.references[11] Bengochea-Guevara, J. M., Andújar, D., Cantuña, K., Garijo-Del-Río, C., & Ribeiro, A. (2019, November). An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring. In Iberian Robotics conference (pp. 164-175). Springer,
dcterms.references[12] Myna, A. N., & Prakash, J. (2018). Medical Image Fusion using Interval Type 2 Fuzzy Logic. International Journal of Applied Engineering Research, 13(14),
dcterms.references[13] Mohammadzadeh, A., & Kayacan, E. (2019). A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications. Neurocomputing, 338,
dcterms.references[14] Desta, H. (2017). Development of Automatic Sesame Grain Classification and Grading System Using Image Processing Techniques (Doctoral dissertation, Addis Ababa University).spa
dcterms.references[15] Davila, I., Lopez-Juarez, I., Mendez, G. M., Osorio-Comparan, R., Lefranc, G., & Cubillos, C. (2017). A singleton type-1 fuzzy logic controller for on-line error compensation during robotic welding. International Journal of Computers Communications & Control, 12(2), 201-
dcterms.references[16] Varela, N., Silva, J., Pineda, O. B., & Cabrera, D. (2020). Prediction of the Corn Grains Yield through Artificial Intelligence. Procedia Computer Science, 170,
dcterms.references[17] Viloria A., Varela N., Pérez D.M., Lezama O.B.P. (2020) Data Processing for Direct Marketing Through Big Data. In: Smys S., Tavares J., Balas V., Iliyasu A. (eds) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol 1108. Springer,

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2634]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal