Mostrar el registro sencillo del ítem

dc.contributor.authorCañas Cervantes, Rodolfospa
dc.contributor.authorMartinez Palacio, Ubaldospa
dc.date.accessioned2021-01-07T18:35:58Z
dc.date.available2021-01-07T18:35:58Z
dc.date.issued2020
dc.identifier.issn2352-9148spa
dc.identifier.urihttps://hdl.handle.net/11323/7668spa
dc.description.abstractObesity is a worldwide disease that affects people of all ages and gender; in consequence, researchers have made great efforts to identify factors that cause it early. In this study, an intelligent method is created, based on supervised and unsupervised techniques of data mining such as Simple K-Means, Decision Trees (DT), and Support Vector Machines (SVM) to detect obesity levels and help people and health professionals to have a healthier lifestyle against this global epidemic. In this research the primary source of collection was from students 18 and 25 years old at institutions in the countries of Colombia, Mexico, and Peru. The study takes a dataset relating to the main causes of obesity, based on the aim to reference high caloric intake, a decrease of energy expenditure due to the lack of physical activity, alimentary disorders, genetics, socioeconomic factors, and/or anxiety and depression. In the selected dataset, 178 students participated in the study, 81 male and 97 female. Using algorithms including Decision Tree, Support Vector Machine (SVM), and Simple K-Means, the results show a relevant tool to perform a comparative analysis among the mentioned algorithms.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceInformatics in Medicine Unlockedspa
dc.subjectObesityspa
dc.subjectSimple k-meansspa
dc.subjectDecision treesspa
dc.subjectSupport vector machinesspa
dc.titleEstimation of obesity levels based on computational intelligencespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S2352914820306225spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.imu.2020.100472spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] Guti´errez HM. Diez problemas de la Poblacion ´ de Jalisco: una perspectiva sociodemografica. ´ In: Edicion ´ Primera, editor. Guadalajara, M´exico. Direccion ´ de Publicaciones del Gobierno de Jalisco; 2010.spa
dc.relation.references[2] OMS. Organizacion ´ mundial de la Salud. 2016. http://www.who.int/mediacent re/factsheets/fs311/es/.spa
dc.relation.references[3] Olmedo, M. V. “La obesidad: un problema de salud pública. 2016 Revista de divulgacion ´ científica y tecnologica ´ de la Universidad Veracruzana. Reference to a journal publication with an article number.spa
dc.relation.references[4] Hernández GM. Prevalencia de sobrepeso y obesidad, y factores de riesgo, en ninos ˜ de 7-12 anos, ˜ en una escuela pública de Cartagena. Universidad Nacional de Colombia (Colombia), septiembre - octubre; 2011.spa
dc.relation.references[5] Davila-Payan C, DeGuzman M, Johnson K, Serban N, Swann J. Estimating prevalence of overweight or obese children and adolescents in small geographic areas using publicly available data. Prev Chronic Dis 2015;12:140229. https://doi. org/10.5888/pcd12.140229.spa
dc.relation.references[6] Manna, S., & Jewkes, A. M. “Understanding early childhood obesity risks: an empirical study using fuzzy signatures”, In Fuzzy systems (FUZZ-IEEE). 2014 IEEE international conference on (pp. 1333-1339). IEEE.spa
dc.relation.references[7] Adnan MHBM, Husain W. A hybrid approach using Naïve Bayes and Genetic Algorithm for childhood obesity prediction”. In: Computer & information science (ICCIS), 2012 international conference on, vol. 1. IEEE; 2012. p. 281–5.spa
dc.relation.references[8] Adnan MHM, Husain W. A framework for childhood obesity classifications and predictions using NBtree”. In: Information technology in asia (CITA 11), 2011 7th international conference on. IEEE; 2011. p. 1–6.spa
dc.relation.references[9] Adnan, M. H. B. M., Husain, W., & Damanhoori, F. “A survey on utilization of data mining for childhood obesity prediction”, In Information and telecommunication technologies (APSITT). 2010 8th asia-pacific symposium on (pp. 1-6). IEEE.spa
dc.relation.references[10] Dugan TM, Mukhopadhyay S, Carroll A, Downs S. Machine learning techniques for prediction of early childhood obesity. Appl Clin Inf 2015;6(3):506–20.spa
dc.relation.references[11] Zhang ML, Zhou ZH. Multi-instance clustering with applications to multi-instance prediction. Appl Intell 2009;31(1):47–68.spa
dc.relation.references[12] Suguna M. Childhood obesity epidemic analysis using classification algorithms. Int. J. Mod. Comput. Sci 2016;4(1):22–6.spa
dc.relation.references[13] Abdullah FS, Manan NSA, Ahmad A, Wafa SW, Shahril MR, Zulaily N, Ahmed A. Data mining techniques for classification of childhood obesity among year 6 school children. In: International conference on soft computing and data mining. Cham: Springer; 2016. p. 465–74.spa
dc.relation.references[14] De-La-Hoz-Correa Eduardo, Mendoza-Palechor Fabio E, De-La-Hoz-Manotas Alexis, Morales-Ortega Roberto C, Sanchez ´ Hernandez ´ Beatriz Adriana. Obesity level estimation software based on decision trees. J Comput Sci 2019;15(Issue 1):67–77. https://doi.org/10.3844/jcssp.2019.67.77.spa
dc.relation.references[15] Ward ZJ, Long MW, Resch SC, Gortmaker SL, Cradock AL, Giles C, et al. Redrawing the US obesity landscape: bias-corrected estimates of state-specific adult obesity prevalence. PloS One 2016;11(3):e0150735. https://doi.org/10.1371/journal. pone.0150735.spa
dc.relation.references[16] Gomez ´ M, Avila ´ L. La obesidad: un factor de riesgo cardiometabolico. ´ In: Medicina de Familia, vol. 8; 2008. p. 91–7. Nº. 2.spa
dc.relation.references[17] Joachims T. Text categorization with support vector machines. Proceedings of the European C~njerence on machine learning. Springer-Verlrtg; 1998.spa
dc.relation.references[18] Kim Y, Ling H. Human activity classification based on micro-Doppler signatures using a support vector machine”. IEEE Trans Geosci Rem Sens 2009;47(5): 1328–37.spa
dc.relation.references[19] Da Silva F, Niedermeyer E. “Electroencephalography: basic principles. 1993. Clinical applications, and related fields”, William & Wikins, Baltimore.spa
dc.relation.references[20] Parsons TD, Rizzo AA. Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J Behav Ther Exp Psychiatr 2008;39 (3):250–61.spa
dc.relation.references[21] De la Hoz E, de la Hoz E, Ortiz A, Ortega J, Martínez-Alvarez ´ A. Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl-Based Syst 2014;71:322–38.spa
dc.relation.references[22] Bekele E, Wade J, Bian D, Fan J, Swanson A, Warren Z, Sarkar N. Multimodal adaptive social interaction in virtual environment (MASI-VR) for children with Autism spectrum disorders (ASD). In: 2016 IEEE virtual reality. VR; 2016. p. 121–30. https://doi.org/10.1109/VR.2016.75046_95.spa
dc.relation.references[23] Han J, Kamber M. Data mining: concepts and techniques. second ed. San Francisco: Morgan Kaufmann Publishers; 2001.spa
dc.relation.references[24] Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference and prediction. New York: Springer; 2001.spa
dc.relation.references[25] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Network 2005;16(3):645–78.spa
dc.relation.references[26] Zhang ML, Zhou ZH. Multi-instance clustering with applications to multi-instance prediction. Appl Intell 2009;31(1):47–68.spa
dc.relation.references[27] Palechor FM, De la Hoz Manotas A, Colpas PA, Ojeda JS, Ortega RM, Melo MP. Cardiovascular disease analysis using supervised and unsupervised data mining techniques. J SW 2017;12(2):81–90.spa
dc.relation.references[28] Mendoza-Palechor F, Menezes ML, Sant’Anna A, Ortiz-Barrios M, Samara A, Galway L. Affective recognition from EEG signals: an integrated data-mining approach. Journal of Ambient Intelligence and Humanized Computing 2018:1–20.spa
dc.relation.references[29] Fabio Mendoza-Palechor, Alexis De la Hoz-Manotas, Roberto Morales-Ortega, Ubaldo Martinez-Palacio, Jorge Diaz-Martinez, Harold Combita-Nino. Designing A method for alcohol consumption prediction based on clustering and support vector machines. Res J Appl Sci Eng Technol 2017;14(4):146–54.spa
dc.relation.references[30] Palechor FM, Manotas ADLH, Franco EDLH, Colpas PA. Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems. J Theor Appl Inf Technol 2015;82(2):291.spa
dc.relation.references[31] Salley James N, Hoover Adam W, Wilson Michael L, Muth Eric R. Comparison between human and bite-based methods of estimating caloric intake. J Acad Nutr Diet 2016;116(Issue 10):1568–77. https://doi.org/10.1016/j.jand.2016.03.007. ISSN 2212-2672, http://www.sciencedirect.com/science/article/pii/S2212267 216300090.spa
dc.relation.references[32] Zhu J, Pande A, Mohapatra P, Han JJ. Using deep learning for energy expenditure estimation with wearable sensors. In: 2015 17th international conference on Ehealth networking. Boston, MA: Application & Services (HealthCom); 2015. p. 501–6. https://doi.org/10.1109/HealthCom.2015.7454554.spa
dc.relation.references[33] Hall R, Pasipanodya J, Swancutt M, Meek C, Leff R, Gumbo T. Supervised machinelearning reveals that old and obese people achieve low dapsone concentrations. CPT Pharmacometrics Syst Pharmacol 2017;6:552–9. https://doi.org/10.1002/ psp4.12208.spa
dc.relation.references[34] Gerl MJ, et al. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol Oct. 2019;17(10):e3000443. https://doi. org/10.1371/journal.pbio.3000443 [Online]. Available:.spa
dc.relation.references[35] Craig A. Biwer. Computing obesity: signal processing and machine learning applied to predictive modeling of clinical weight-loss. 2017. https://deepblue.lib.umich.ed u/bitstream/handle/2027.42/140907/cbiwer_1.pdf?sequence=1&isAllowed=y.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3120]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal