Mostrar el registro sencillo del ítem

dc.contributor.authorLima, Bianca D.spa
dc.contributor.authorTeixeira, Elba C.spa
dc.contributor.authorHower, James C.spa
dc.contributor.authorCiveira, Matheus S.spa
dc.contributor.authorRamírez, Omarspa
dc.contributor.authorYang, Xue-chengspa
dc.contributor.authorSilva Oliveira, Marcos Leandrospa
dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.date.accessioned2021-01-12T17:04:25Z
dc.date.available2021-01-12T17:04:25Z
dc.date.issued2021
dc.identifier.issn1674-9871spa
dc.identifier.urihttps://hdl.handle.net/11323/7676spa
dc.description.abstractHaving a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAPA). An intense sampling campaign during thirteen consecutive months was carried out and the chemical composition of NPs was examined by advanced microscopy techniques. The results showed that highest concentrations of the pollutants occur in colder seasons and influenced by variables such as frequency of the trains and passenger densities. Also, internal and external sources of pollution at the stations were identified. The predominance of NPs enriched with metals that increase oxidative stress like Cd, Fe, Pb, Cr, Zn, Ni, V, Hg, Sn, and Ba both on the platforms and inside trains, including Fe-minerals as hematite and magnetite, represents a critical risk to the health of passengers and employees of the system. This interdisciplinary and multi-analytical study aims to provide an improved understanding of reported adverse health effects induced by railway system aerosols.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceGeoscience Frontiersspa
dc.subjectNanoparticlesspa
dc.subjectPotential hazardous elementsspa
dc.subjectEnvironmental chemistryspa
dc.subjectHuman healthspa
dc.subjectRailway environmentspa
dc.subjectIndoor air qualityspa
dc.titleMetal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollutionspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1674987120302693?via%3Dihub#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gsf.2020.12.010spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAarnio, P., Yli-Tuomi, T., 2005. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 39, 5059–5066.spa
dc.relation.referencesAbbasi, S., Wahlström, J., Olander, L., Larsson, Ch., Olofsson, U., Sellgren, U., 2011. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 273, 93–99.spa
dc.relation.referencesAbbasi, S., Jansson, A., Sellgren, U., Olofsson, U., 2013. Particle emissions from rail traffic: a literature review. Crit. Rev. Env. Sci. Tec. 43, 2511–2544.spa
dc.relation.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.spa
dc.relation.referencesBolognin, S., Messori, L., Zatta, P., 2009. Metal ion physiopathology in neurodegenerative disorders. Neuromol. Med. 11, 223–238.spa
dc.relation.referencesCartenì, A., Cascetta, F., Campana, S., 2015. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 101, 328–337.spa
dc.relation.referencesCepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, Ch., Dhana, K., Bramer, W., Franco, O., 2017. Levels of ambient air pollution according to mode of transport: a systematic review. The Lancet Public Health 2, 23–34.spa
dc.relation.referencesCerletti, P., Eze, I.C., Schaffner, E., Imboden, M., Probst-Hensch, N., 2020. The independent association of source-specific transportation noise exposure, noise annoyance and noise sensitivity with health-related quality of life. Environ. Int. 143, 105960.spa
dc.relation.referencesCha, Y., Tu, M., Elmgren, M., Silvergren, S., Olofsson, U., 2018. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Environ. Res. 166, 16–24.spa
dc.relation.referencesChen, X.C., Zhang, Z.S., Engling, G., Zhang, R.J., Tao, J., Lin, M., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmos. Pollut. Res. 5, 361–370.spa
dc.relation.referencesChen, X.C., Cao, J.J., Ward, T.J., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ. 742, 140501.spa
dc.relation.referencesCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.spa
dc.relation.referencesCNT - National Confederation of Transport, 2014. Statistical report March 2014. https:// web.archive.org/web/20150923205053/http://www.cnt.org.br/boletim_marco_ 2014. (Accessed 5 May 2020) (in Portuguese).spa
dc.relation.referencesCusack, M., Talbot, N., Ondráček, J., Minguillón, M.C., Martins, V., Klouda, K., Ždímal, V., 2015. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 188, 176–183.spa
dc.relation.referencesDe Miranda, R.M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P.A., Saldiva, P., 2011. Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 5, 63–77.spa
dc.relation.referencesDe Paoli, F., Agudelo-Castañeda, D., Teixeira, E., Silva, L., Kumar, P., 2018. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanopart. Res. 20, 264.spa
dc.relation.referencesFont, O., Moreno, T., Querol, X., Martins, V., Sánchez Rodas, D., de Miguel, E., Capdevila, M., 2019. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transport. Res. D:Tr. E. 72, 17–35.spa
dc.relation.referencesFont, A., Tremper, A., Lin, Ch., Priestman, M., Marsh, D., Woods, M., Heal, M., Green, D., 2020. Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. Environ. Pollut. 262, 114284.spa
dc.relation.referencesGarshick, E., Laden, F., Hart, J.E., Rosner, B., Davis, M.E., Eisen, E.A., Smith, T.J., 2008. Lung cancer and vehicle exhaust in trucking industry workers. Environ. Health Perspectives 116, 1327–1332.spa
dc.relation.referencesGivoni, M., Brand, C., Watkiss, P., 2009. Are railways “climate friendly”? Built Environ. 35, 70–86.spa
dc.relation.referencesGuha, N., Straif, K., Benbrahim-Tallaa, L., 2011. The IARC monographs on the carcinogenicity of crystalline silica. Med. Lav. 102, 310–320.spa
dc.relation.referencesHam, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento. California. Atmos. Environ. 167, 335–345.spa
dc.relation.referencesHeal, M.R., Kumar, P., Harrison, R.M., 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606–6630.spa
dc.relation.referencesIslam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10- associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053.spa
dc.relation.referencesJeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52.spa
dc.relation.referencesJohansson, C., Johansson, P.Å., 2003. Particulate matter in the underground of Stockholm. Atmos. Environ. 37, 3–9.spa
dc.relation.referencesJohansson, C., Norman, M., Gidhagen, L., 2007. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 127, 477–487.spa
dc.relation.referencesKang, S., Hwang, H., Park, Y., Kim, H., Ro, C.U., 2008. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 42, 9051–9057.spa
dc.relation.referencesKaragulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M., 2015. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483.spa
dc.relation.referencesKarlsson, H.L., Holgersson, Å., Möller, L., 2008. Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 21, 726–731.spa
dc.relation.referencesKelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526.spa
dc.relation.referencesKnibbs, L., Cole-Hunter, T., Morawska, L., 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45, 2611–2622.spa
dc.relation.referencesKrall, J.R., Ladva, C.N., Russell, A.G., Golan, R., Peng, X., Shi, G., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta commuters exposure studies. J. Expo. Sci. Environ. Epidemiol. 28, 337–347.spa
dc.relation.referencesKumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmosheric environment: a review. J. Aerosol Sci 42, 580–603.spa
dc.relation.referencesKumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133, 105181.spa
dc.relation.referencesKwon, S.-B., Park, D., Cho, Y., Park, E.-Y., 2010. Measurement of natural ventilation rate in Seoul Metropolitan Subway Cabin. Indoor Built Environ. 19, 366–374.spa
dc.relation.referencesKwon, S.B., Jeong, W., Park, D., Kim, K.T., Cho, K.H., 2015. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations. Korea. J. Hazard. Mater. 297, 295–303.spa
dc.relation.referencesLee, H.W., Namgung, H.G., Kwon, S.B., 2018. Effect of train velocity on the amount of airborne wear particles generated from wheel–rail contacts. Wear 414, 296–302.spa
dc.relation.referencesLi, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 524, 237–245.spa
dc.relation.referencesLiu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., 2019. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381, 705–715.spa
dc.relation.referencesLundbäck, M., 2009. Cardiovascular effects of exposure to diesel exhaust - mechanistic and interventional studies. Medical Dissertation, Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy. Umeå University, Umeå, Sweden.spa
dc.relation.referencesMartins, V., 2016. Air quality in subway systems: particulate matter concentrations, chemical composition, sources and personal exposure. Ph.D. thesis. University of Barcelona 234p.spa
dc.relation.referencesMartins, V., Cruz Minguillón, M., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Lazaridis, M., 2015. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 90, 103–113.spa
dc.relation.referencesMendes, L., Gini, M.I., Biskos, G., Colbeck, I., Eleftheriadis, K., 2018. Airborne ultrafine particles in a naturally ventilated metro station: dominant sources and mixing state determined by particle size distribution and volatility measurements. Environ. Pollut. 239, 82–94.spa
dc.relation.referencesMinguillón, M.C., Reche, C., Martins, V., Amato, F., de Miguel, E., Capdevila, M., Moreno, T., 2018. Aerosol sources in subway environments. Environ. Res. 167, 314–328.spa
dc.relation.referencesMohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents - a critical review. J. Hazard. Mater. 142, 1–53.spa
dc.relation.referencesMohsen, M., Ahmed, M.B., Zhou, J.L., 2018. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney. Australia. Transport. Res. D:Tr. E. 62, 112–124.spa
dc.relation.referencesMorawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138.spa
dc.relation.referencesMoreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Gibbons, W., 2014. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92, 461–468.spa
dc.relation.referencesMoreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, M.C., Gibbons, W., 2015. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 505, 367–375.spa
dc.relation.referencesMorillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., Madariaga, J.M., 2016. Study of particulate matter from primary/secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 550, 285–296.spa
dc.relation.referencesPacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, 269–298.spa
dc.relation.referencesPark, D.U., Ha, K.C., 2008. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul. Korea. Environ. Int. 34, 629–634.spa
dc.relation.referencesPetzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., Zhang, X.-Y., 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379.spa
dc.relation.referencesPun, V.C., Tian, L., Yu, I.T., Kioumourtzoglou, M.A., Qiu, H., 2015. Differential distributed lag patterns of source-specific particulate matter on respiratory emergency hospitalizations. Environ. Sci. Technol. 49, 3830–3838.spa
dc.relation.referencesQuerol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., De Miguel, E., Capdevilla, M., 2012. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12, 5055–5076.spa
dc.relation.referencesQuispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.spa
dc.relation.referencesRahim, M.F., Pal, D., Ariya, P.A., 2019. Physicochemical studies of aerosols at Montreal Trudeau Airport: the importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 246, 734–744.spa
dc.relation.referencesRamírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655spa
dc.relation.referencesReche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2015. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 120, 417–426.spa
dc.relation.referencesReche, C., Moreno, T., Martins, V., Minguillón, M.C., Jones, T., de Miguel, E., Capdevila, M., Centelles, S., Querol, X., 2017. Factors controlling particle number concentration and size at metro stations. Atmos. Environ. 156, 169–181.spa
dc.relation.referencesRibeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041.spa
dc.relation.referencesRice, M.B., Ljungman, P.L., Wilker, E.H., Gold, D.R., Schwartz, J.D., Koutrakis, P., 2013. Shortterm exposure to air pollution and lung function in the Framingham heart study. Am. J. Respir. Crit. Care Med. 188, 1351–1357.spa
dc.relation.referencesRichmond-Bryant, J., Long, T.C., 2020. Influence of exposure measurement errors on results from epidemiologic studies of different designs. J. Expo. Sci. Environ. Epidemiol. 30, 420–429.spa
dc.relation.referencesRipanucci, G., Grana, M., Vicentini, L., Magrini, A., Bergamaschi, A., 2006. Dust in the underground railway tunnels of an Italian town. J. Occup. Environ. Hyg. 3, 16–25.spa
dc.relation.referencesRis, C., 2007. U.S. EPA Health assessment for diesel engine exhaust: a review. Inhal. Toxicol 19 (Supplement 1), 229–239.spa
dc.relation.referencesRojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.spa
dc.relation.referencesRoss, M., Nolan, R.P., Langer, M.A., Cooper, W.C., 1993. Health effects of mineral dusts. In: Guthrie Jr., G.D., Mossman, B.T. (Eds.), Reviews in Mineralogy and Geochemistry. Book Crafters, Inc., Chelsea, Michigan, p. 361.spa
dc.relation.referencesSalma, I., Weidinger, T., Maenhaut, W., 2007. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 41, 8391–8405.spa
dc.relation.referencesShakya, K.M., Saad, A., Aharonian, A., 2020. Commuter exposure to particulate matter at underground subway stations in Philadelphia. Build. Environ. 186, 107322.spa
dc.relation.referencesSilva, L.F.O., Milanes, C., Pinto, D., Ramírez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.spa
dc.relation.referencesSundh, J., Olofsson, U., Olander, L., Jansson, A., 2009. Wear rate testing in relation to airborne particles generated in a wheel-rail contact. Lubr. Sci. 21, 135–150.spa
dc.relation.referencesTan, S.H., Roth, M., Velasco, E., 2017. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 170, 245–258.spa
dc.relation.referencesTeixeira, E.C., Agudelo-Castañeda, D.M., Guimarães, J.M., Leal, K.A., de Oliveira, K., Wiegand, F., 2012. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS. Brazil. Atmos. Res. 118, 390–403.spa
dc.relation.referencesTezza, V.B., Scarpato, M., Oliveira, L.F.S., Bernardin, A.M., 2015. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 276, 60–65.spa
dc.relation.referencesTian, Y., Liu, H., Liang, T., Xiang, X., Li, M., Juan, J., 2019. Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: a time-series analysis. Int. J. Epidemiol. 48, 1142–1151. Tokarek, S., Bernis, A., 2006. An example of particle concentration reduction in Parisian subway stations by electrostatic precipitation. Environ. Technol. 27, 1279–1287.spa
dc.relation.referencesVan Ryswyk, K., Anastasopolos, A.T., Evans, G., Sun, L., Sabaliauskas, K., Kulka, R., Weichenthal, S., 2017. Metro commuter exposures to particulate air pollution and PM2.5-associated elements in three Canadian cities: the urban transportation exposure study. Environ. Sci. Technol. 51, 5713–5720.spa
dc.relation.referencesVilcassim, M.J., Thurston, G.D., Peltier, R.E., Gordon, T., 2014. Black carbon and particulate matter (PM2.5) concentrations in New York City’s Subway Stations. Environ. Sci. Technol. 48, 14738–14745.spa
dc.relation.referencesWang, F., Costabileb, F., Li, H., Fang, D., Alligrini, I., 2010. Measurements of ultrafine particle size distribution near Rome. Atmos. Res. 98, 69–77.spa
dc.relation.referencesWang, X., Westerdahl, D., Wu, Y., Pan, X., Zhang, K.M., 2011. On-road emission factor distributions of individual diesel vehicles in and around Beijing. China. Atmos. Environ. 45, 503–513.spa
dc.relation.referencesWang, B.Q., Liu, J.F., Ren, Z.H., Chen, R.H., 2016. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res. 23, 22647–22657.spa
dc.relation.referencesWaychunas, G.A., Kim, C.S., Banfield, J.F., 2005. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433.spa
dc.relation.referencesWHO, 2013. Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project. The WHO Regional Office for Europe. Technical Report, Copenhagen, Denmark.spa
dc.relation.referencesXu, B., Hao, J., 2017. Air quality inside subway metro indoor environment worldwide: a review. Environ. Int. 107, 33–46.spa
dc.relation.referencesYoung, L.-H., Wang, Y.-T., Hsu, H.-C., Lin, C.-H., Liou, Y.-J., Lai, Y.-C., Cheng, M.-T., 2012. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district. Sci. Total Environ. 425, 135–145.spa
dc.relation.referencesZhao, X., Ke, Y., Zuo, J., Xiong, W., Wu, P., 2020. Evaluation of sustainable transport research in 2000-2019. J. Clean. Prod. 256, 120404.spa
dc.relation.referencesZhu, Y., Kuhn, T., Mayo, P., Hinds, W.C., 2006. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 40, 2531–2536spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal