Show simple item record


dc.creatorMárquez Brazón, E. A.
dc.creatorFlores-Sumoza, M. C.
dc.creatorCortes Gómez, E.
dc.creatorPuello-Polo, E.
dc.date.accessioned2021-01-15T01:22:56Z
dc.date.available2021-01-15T01:22:56Z
dc.date.issued2018
dc.identifier.issn0001-9704
dc.identifier.urihttps://hdl.handle.net/11323/7688
dc.description.abstractThe elimination kinetics of the compounds 5-chloro 2-methylpentene, 5-chloropentan-2-imine, (5-chloropentan-2-ylidene) phosphine and 5-chloropenta2-thione compounds were studied using the electron structure methods: B3LYP, MW1PW91 and PBEPBE with the basis set 6-31++G(2d,p), respectively, belonging to the computational package G09W. According to the elimination products, two possible reaction mechanisms were proposed: a discrete path through a four-member transition state and a intime ion-par via a 5-membered cyclic transition state, where the C = X group assists, anchimerically, the HCl elimination. With the exception of the group X = CH2, the favorable mechanism occurs through an intimate Ion-Pair type 5-membered TS, where the breaking of the C2 - Cl1 bond is the determining step of the reaction. The concept of stabilization energy by anchimeric assistance was proposed and used to determine the following order of reactivity: S> PH> NH> O; A linear relationship between the free activation energy and the molecular polarizability of the transition states was found, suggesting that this parameter plays a pivotal role in the anchimerical assistance observed in these systems.spa
dc.description.abstractLa cinética de eliminación de los compuestos 5-cloro-2-metilpenteno, 5-cloropentan-2-imina, (5-cloropentan-2-iliden) fosfina y 5-cloropenta-2-tiona fue estudiada usando los métodos de estructura electrónica: B3LYP, MW1PW91 y PBEPBE con el set de bases 6-31++G(2d,p), pertenecientes al paquete computacional G09W. De acuerdo a los productos de eliminación, dos posibles mecanismos de reacción fueron propuestos: una vía discreta, a través de un estado de transición de cuatro miembros y una vía ión par-íntimo, vía un estado de transición cíclico de 5 miembros donde el grupo C=X asiste, anquiméricamente, la salida del átomo de cloro. Con la excepción del grupo X=CH2, el mecanismo favorable resulto ser el que ocurre a través de un TS de 5 miembros tipo Ion-Par íntimo, donde la ruptura del enlace C2 -Cl1 es el paso determinante de la reacción. El concepto de energía de estabilización por asistencia anquimérica fue propuesto y usado para determinar el siguiente orden de reactividad: S>PH>NH>O. Se encontró una relación lineal entre la energía libre de activación y la polarizabilidad molecular de los estados de transición, sugiriendo que este parámetro juega un rol fundamental en la asistencia anquimérica observada en estos sistemas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceAfinidad: Revista de química teórica y aplicadaspa
dc.subjectAsistencia anquiméricaspa
dc.subjectenergía de estabilizaciónspa
dc.subjectestado de transiciónspa
dc.subjectenergía libre de activaciónspa
dc.subjectDFTspa
dc.subjectIon-Par íntimospa
dc.subjectAnchimeric Assitancespa
dc.subjectActivation free energyspa
dc.subjectDFTspa
dc.subjectintimate Ion-Parspa
dc.subjectstabilization energyspa
dc.subjectTransition statespa
dc.titleEstudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2 , S, NH, PH), usando la teoría del funcional de la densidadspa
dc.title.alternativeStudy of the Influence of the polarization of the neighboring group C = X, in the kinetics of hydrogen chloride removal from b- (substituted) alkyl chlorides (X = CH2 , S, NH, PH), using the density functional theoryspa
dc.typearticlespa
dcterms.referencesAngelini, G.; Speran M. Direct Evidence of Neighbouring Group Participation in the Gas Phase. 1978. Journal of the chemical society. Chem. Comm. 1978, 5, 213-214.spa
dcterms.referencesReid, G.; Simpson, R.J.; Richard, A.; O’Hair, J. Leaving Group and Gas Phase Neighboring Group Effects in the Side Chain Losses from Protonated Serine and its Derivatives. J. Am. Soc. Mass. Espectrom. 2000, 11, 1047–1060.spa
dcterms.referencesRichard, A.; O’Hair, J.; Reid, G. Neighboring group versus cis-elimination mechanisms for side chain loss from protonated methionine, methionine sulfoxide and their peptides. Eur. Mass. Spectrom. 1999, 5, 325–334.spa
dcterms.referencesRomero, M.; Cordova, T.; Chuchani, G. Theoretical study of neighboring group participation of methyl v-chloroesters elimination kinetics in the gas phase. J. Phys. Org. Chem. 2009, 22, 403–409.spa
dcterms.referencesMora, J.; Lezama, J.; Marquez, E.; Escalante, L.; Córdova, T.; Chuchani, G. Theoretical study of neighboring carbonyl group participation in the elimination kinetics of chloroketones in the gas phase. J. Phys. Org. Chem. 2011, 24, 229–240.spa
dcterms.referencesLuiggi, M.; Mora, J.; Loroño, M.; Marquez, E.; Lezama, J.; Cordova, T.; Chuchani, G. Theoretical calculations on the gas-phase thermal decomposition kinetics of selected thiomethyl chloroalkanes: A new insight of the mechanism. Computational and Theoretical Chemistry, 2014, 1027, 165–172.spa
dcterms.referencesYoshitake, Y.; Nakagawa, H.; Harano, K. A Theoretical Study of Neighboring-Group Participation in Thione-toThiol Rearrangement of Xanthates. Molecular Orbital Calculation Using a Conductor-Like Screening Model (COSMO) Approach. Chem. Pharm. Bull. 2001, 49, 1433-1439.spa
dcterms.referencesJones, R. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897-923.spa
dcterms.referencesGill P.; Johnson, B.; Pople, J. The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets. Chem. Phys. Lett. 1992, 197, 499-505spa
dcterms.referencesPerdew, J.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 1996, 54, 16533.spa
dcterms.referencesPerdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.spa
dcterms.referencesM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, D. A. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2009.spa
dcterms.referencesPeng C.; Schlegel, B. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449-454.spa
dcterms.referencesNúñez, J.; Márquez, E.; Rivas, C.; Urdaneta, N. Estudio computacional del rearreglo sigmatrópico [1,3] de la 2 (Z)-3-(4-(dimetilamino)benciliden)tiocroman-4-ona. Av. Quím. 2017, 12, 23-30.spa
dcterms.referencesGlendening, E.; Landis, C.; Weinhold, F.. Natural bond orbital methods. WIREs Comput Mol Sci. 2012, 2, 1–42.spa
dcterms.referencesWibber, K. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedrom, 1968, 24, 1083-1096.spa
dcterms.referencesMoyano, A.; Perica,M.; Valenti, E. A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.beta.-lactones). J. Org. Chem. 1989, 54, 573.spa
dcterms.referencesChuchani, G. In The Chemistry of Halides, Pseudo-Halides and Azides, Ch 19, (Eds.: S. Patai, Z. Rapopport), Wiley, New York, 1995, 1069–1119.spa
dcterms.referencesKuznetsova, O.; Egorochkin,A.; Khamaletdinova, N. The Influence of the Polarizability Effect on the Activation Parameters of Reactions of Organometallic Compounds. Rus. J. Gen. Chem. 2015, 85, 2617–2628.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International