Mostrar el registro sencillo del ítem

dc.contributor.authorShahzad Javed, Muhammadspa
dc.contributor.authorMa, Taospa
dc.contributor.authorJurasz, Jakubspa
dc.contributor.authorCanales, Fausto Aspa
dc.contributor.authorLin, Shaoquanspa
dc.contributor.authorAhmed, Salmanspa
dc.contributor.authorZhang, Yijiespa
dc.date.accessioned2021-01-15T21:46:14Z
dc.date.available2021-01-15T21:46:14Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7702spa
dc.description.abstractThis study investigates and compares the various combinations of renewable energies (solar, wind) and storage technologies (battery, pumped hydro storage, hybrid storage) for an off-grid power supply system. Four configurations (i.e., single RE source system, double RE source system, single storage, and double storage system) based on two scenarios (self-discharge equal to 0% and 1%) are considered, and their operational performance is compared and analyzed. The energy management strategy created for the hybrid pumped battery storage (HPBS) considers that batteries cover low energy surplus/shortages while pumped hydro storage (PHS) is the primary energy storage device for serving high-energy generations/deficits. The developed mathematical model is optimized using Particle Swarm Optimization and the performance and results of the optimizer are discussed in particular detail. The results evidence that self-discharge has a significant impact on the cost of energy (13%–50%) for all configurations due to the substantial increase in renewable energy (RE) generators size compared to the energy storage capacity. Even though solar-wind-PHS is the cost-optimal arrangement, it exhibits lower reliability when compared to solar-wind-HPBS. The study reveals the significance of HPBS in the off-grid RE environment, allowing more flexible energy management, enabling to guarantee a 100% power supply with minimum cost and reducing energy curtailment. Additionally, this study presents and discuss the results of a sensitivity analysis conducted by varying load demand and energy balance of all considered configurations is performed, which reveals the effectiveness of the supplementary functionality of both storages in hybrid mode. Overall, the role of energy storage in hybrid mode improved, and the total energy covered by hybrid storage increased (48%), which reduced the direct dependency on variable RE generation.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceRenewable Energyspa
dc.subjectOff-grid renewable energy systemspa
dc.subjectHybrid pumped battery storagespa
dc.subjectParticle swarm optimizationspa
dc.subjectCost of energyspa
dc.subjectEnergy balance analysisspa
dc.subjectSensitivity analysisspa
dc.titleEconomic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote islandspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0960148120316293spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.renene.2020.10.063spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references[1] IRENA Renewable Power Generations Costs in 2018 978-92-9260-126-3, International Renewable Energy Agency, Abu Dhabi (2019) 2019spa
dc.relation.references[2] M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar-wind-pumped hydro energy storage systems: review and future perspective Renew. Energy, 148 (2019), pp. 176-192spa
dc.relation.references[3] M.S. Javed, A. Song, T. Ma Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm Energy, 176 (2019), pp. 704-717spa
dc.relation.references[4] M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J. Clean. Prod., 243 (2020), p. 118466spa
dc.relation.references[5] T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl. Energy, 160 (2015), pp. 728-736spa
dc.relation.references[6] M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Pol., 39 (2011), pp. 1154-1169spa
dc.relation.references[7] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol. Energy, 195 (2020), pp. 703-724spa
dc.relation.references[8] A. Chatzivasileiadi, E. Ampatzi, I. Knight Characteristics of electrical energy storage technologies and their applications in buildings Renew. Sustain. Energy Rev., 25 (2013), pp. 814-830spa
dc.relation.references[9] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog. Nat. Sci., 19 (2009), pp. 291-312spa
dc.relation.references[10] O. Paish Small hydro power: technology and current status Renew. Sustain. Energy Rev., 6 (2002), pp. 537-556spa
dc.relation.references[11] C. Zhang, Y.-L. Wei, P.-F. Cao, M.-C. Lin Energy storage system: current studies on batteries and power condition system Renew. Sustain. Energy Rev., 82 (2018), pp. 3091-3106spa
dc.relation.references[12] J. Baker New technology and possible advances in energy storage Energy Pol., 36 (2008), pp. 4368-4373spa
dc.relation.references[13] A.A.K. Arani, H. Karami, G.B. Gharehpetian, M.S.A. Hejazi Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids Renew. Sustain. Energy Rev., 69 (2017), pp. 9-18spa
dc.relation.references[14] T. Ma, H. Yang, L. Lu Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems Appl. Energy, 153 (2015), pp. 56-62spa
dc.relation.references[15] I. Janghorban Esfahani, P. Ifaei, J. Kim, C. Yoo Design of hybrid renewable energy systems with battery/hydrogen storage considering practical power losses: a MEPoPA (modified extended-power pinch analysis) Energy, 100 (2016), pp. 40-50spa
dc.relation.references[16] I. San Martín, A. Ursúa, P. Sanchis Integration of fuel cells and supercapacitors in electrical microgrids: analysis, modelling and experimental validation Int. J. Hydrogen Energy, 38 (2013), pp. 11655-11671spa
dc.relation.references[17] G.N. Prodromidis, F.A. Coutelieris Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects Renew. Energy, 39 (2012), pp. 149-153spa
dc.relation.references[18] J. Li, Q. Yang, F. Robinson, F. Liang, M. Zhang, W. Yuan Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system Energy, 118 (2017), pp. 1110-1122spa
dc.relation.references[19] M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems Energy Convers. Manag., 199 (2019), p. 112046spa
dc.relation.references[20] X. Luo, J. Wang, M. Dooner, J. Clarke Overview of current development in electrical energy storage technologies and the application potential in power system operation Appl. Energy, 137 (2015), pp. 511-536spa
dc.relation.references[21] T. Ma, M.S. Javed Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource Energy Convers. Manag., 182 (2019), pp. 178-190spa
dc.relation.references[22] L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, R. Wennersten Evaluating the benefits of integrating floating photovoltaic and pumped storage power system Energy Convers. Manag., 194 (2019), pp. 173-185spa
dc.relation.references[23] S. Ben Elghali, R. Outbib, M. Benbouzid Selecting and optimal sizing of hybridized energy storage systems for tidal energy integration into power grid J. Modern Power Syst. Clean Energy, 7 (2019), pp. 113-122spa
dc.relation.references[24] N. Destro, A. Benato, A. Stoppato, A. Mirandola Components design and daily operation optimization of a hybrid system with energy storages Energy, 117 (2016), pp. 569-577spa
dc.relation.references[25] M. Zare Oskouei, A. Sadeghi Yazdankhah Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing Energy Convers. Manag., 105 (2015), pp. 1105-1114spa
dc.relation.references[26] T. Ma, H. Yang, L. Lu Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island Energy Convers. Manag., 79 (2014), pp. 387-397spa
dc.relation.references[27] T. Ma, H. Yang, L. Lu Study on stand-alone power supply options for an isolated community Int. J. Electr. Power Energy Syst., 65 (2015), pp. 1-11spa
dc.relation.references[28] D. Çelik, M.E. Meral A novel control strategy for grid connected distributed generation system to maximize power delivery capability Energy, 186 (2019), p. 115850spa
dc.relation.references[29] M.S. Javed, T. Ma Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm Energy Procedia, 158 (2019), pp. 6384-6392spa
dc.relation.references[30] A. Biswas, A. Kumar Techno-Economic Optimization of a Stand-alone PV/PHS/Battery systems for very low load situation Int. J. Renew. Energy Resour., 7 (2017), pp. 844-856spa
dc.relation.references[31] T. Ma, H. Yang, L. Lu, J. Peng Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization Appl. Energy, 137 (2015), pp. 649-659spa
dc.relation.references[32] A.S. Aziz, M.F.N. Tajuddin, M.R. Adzman, A. Azmi, M.A.M. Ramli Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: a case study of Iraq Renew. Energy, 138 (2019), pp. 775-792spa
dc.relation.references[33] M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies, 12 (2019), p. 514spa
dc.relation.references[34] Y. Sawle, S. Gupta, A.K. Bohre Socio-techno-economic design of hybrid renewable energy system using optimization techniques Renew. Energy, 119 (2018), pp. 459-472spa
dc.relation.references[35] S. Chen, G. Fang, X. Huang, M. Yan A joint optimal dispatching method of wind-solar-hydro generation system IOP Conf. Ser. Earth Environ. Sci., 227 (2019), Article 032004spa
dc.relation.references[36] S. Mirjalili, S. Saremi, S.M. Mirjalili, LdS. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst. Appl., 47 (2016), pp. 106-119spa
dc.relation.references[37] T. Niknam, A.K. Fard, A. Seifi Distribution feeder reconfiguration considering fuel cell/wind/photovoltaic power plants Renew. Energy, 37 (2012), pp. 213-225spa
dc.relation.references[38] A. Maleki, A. Askarzadeh Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran Sustain. Energy Technol. Assess,, 7 (2014), pp. 147-153spa
dc.relation.references[39] G. Zhang, B. Wu, A. Maleki, W. Zhang Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies Sol. Energy, 173 (2018), pp. 964-975spa
dc.relation.references[40] A. Maleki, M. Ameri, F. Keynia Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system Renew. Energy, 80 (2015), pp. 552-563spa
dc.relation.references[41] K. Karakoulidis, K. Mavridis, D.V. Bandekas, P. Adoniadis, C. Potolias, N. Vordos Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system Renew. Energy, 36 (2011), pp. 2238-2244spa
dc.relation.references[42] I.B. Askari, M. Ameri Techno-economic feasibility analysis of stand-alone renewable energy systems (PV/bat, wind/bat and hybrid PV/wind/bat) in Kerman, Iran Energy Sources B Energy Econ. Plann., 7 (2012), pp. 45-60spa
dc.relation.references[43] S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew. Energy, 64 (2014), pp. 187-196spa
dc.relation.references[44] S. Lin, T. Ma, M. Shahzad Javed Prefeasibility study of a distributed photovoltaic system with pumped hydro storage for residential buildings Energy Convers. Manag., 222 (2020), p. 113199spa
dc.relation.references[45] T. Ma, H. Yang, L. Lu A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island Appl. Energy, 121 (2014), pp. 149-158spa
dc.relation.references[46] M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed Hybrid pumped hydro and battery storage for renewable energy based power supply system Appl. Energy, 257 (2020), p. 114026spa
dc.relation.references[47] J. Jurasz, B. Ciapała Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird Appl. Energy, 198 (2017), pp. 21-35spa
dc.relation.references[48] J. Jurasz Modeling and forecasting energy flow between national power grid and a solar–wind–pumped-hydroelectricity (PV–WT–PSH) energy source Energy Convers. Manag., 136 (2017), pp. 382-394spa
dc.relation.references[49] A. Kaabeche, S. Diaf, R. Ibtiouen Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria Sol. Energy, 155 (2017), pp. 727-738spa
dc.relation.references[50] M.D.A. Al-falahi, S.D.G. Jayasinghe, H. Enshaei A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system Energy Convers. Manag., 143 (2017), pp. 252-274spa
dc.relation.references[51] M.S. Javed, T. Ma, J. Jurasz, S. Ahmed, J. Mikulik Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems Energy, 210 (2020), p. 118599spa
dc.relation.references[52] A. Stoppato, G. Cavazzini, G. Ardizzon, A. Rossetti A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area Energy, 76 (2014), pp. 168-174spa
dc.relation.references[53] R. Luna-Rubio, M. Trejo-Perea, D. Vargas-Vázquez, G.J. Ríos-Moreno Optimal sizing of renewable hybrids energy systems: a review of methodologies Sol. Energy, 86 (2012), pp. 1077-1088spa
dc.relation.references[54] Y. Sawle, S.C. Gupta, A.K. Bohre Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system Renew. Sustain. Energy Rev., 81 (2018), pp. 2217-2235spa
dc.relation.references[55] G. Bekele, G. Tadesse Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia Appl. Energy, 97 (2012), pp. 5-15spa
dc.relation.references[56] D.M. Gioutsos, K. Blok, L. van Velzen, S. Moorman Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe Appl. Energy, 226 (2018), pp. 437-449spa
dc.relation.references57] E.M. Nfah, J.M. Ngundam Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon Renew. Energy, 34 (2009), pp. 1445-1450spa
dc.relation.references[58] N. Yimen, O. Hamandjoda, L. Meva’a, B. Ndzana, J. Nganhou Analyzing of a photovoltaic/wind/biogas/pumped-hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa—case study of Djoundé in Northern Cameroon Energies, 11 (2018), p. 2644spa
dc.relation.references[59] Kircher KJ. Pumped Hydroelectric Storage Balances a Solar Microgrid.spa
dc.relation.references[60] A. Rathore, N. Patidar Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-Wind based standalone microgrid Int. J. Electr. Power Energy Syst., 106 (2019), pp. 17-32spa
dc.relation.references[61] T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renew. Energy, 69 (2014), pp. 7-15spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International