Show simple item record

dc.creatoramelec, viloria
dc.creatorVarela Izquierdo, Noel
dc.creatorOrtiz-Ospino, Luis Eduardo
dc.creatorPineda Lezama, Omar Bonerge
dc.date.accessioned2021-01-18T14:16:09Z
dc.date.available2021-01-18T14:16:09Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7705
dc.description.abstractTraffic accidents represent a never-ending tragedy, and according to the World Health Organization (2018), 1.33 million people die in the world every year [1]. Most efforts in modeling phenomena of a dynamic nature have focused on working with static snapshots that reduce the natural depth of the world’s dynamics to simplify it, abstracting perspectives that are fixed or static in some way. In the case of traffic accidents, most models used are those based on the principle of cause and effect, where the appearance of one or several variables gives rise to the event, like a domino effect. In this research, the problem of traffic accident avoidance was addressed through the use of a dynamic type model, based on the technique called geosimulation, where all the elements involved are interrelated.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectTraffic accidentsspa
dc.subjectGeosimulationspa
dc.subjectAgent-based modelingspa
dc.subjectGeographic information systemsspa
dc.subjectDynamic modelsspa
dc.subjectTraffixspa
dc.titleGeosimulation as a tool for the prevention of traffic accidentsspa
dc.typearticlespa
dcterms.references1. Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsas A (2011) Cloud computing—the business perspective. Dec Supp Syst 51(1):176–189spa
dcterms.references2. Bifet A, De Francisci Morales G (2014) Big data stream learning with Samoa.spa
dcterms.references3. Lomax T, Schrank D, Turner S, Margiotta R (2003) Report for selecting travel reliability measures. Federal Highway Administration, Washington, DCspa
dcterms.references4. Anderson JA (2007) In: S.A. de C.V. (ed) Redes neuronales, 1a ed. Alfa Omega Gru-po Editor, México, pp 120–125. ISBN 9789701512654spa
dcterms.references5. Pardillo J, Sánchez V (2015) Apuntes de Ingeniería de Tránsito. ETS Ingenieros de Caminos, Canales y Puertos, Madrid, Españaspa
dcterms.references6. Skabardonis A, Varaiya P, Petty K (2003) Measuring recurrent and non-recurrent traffic congestion. Transp Res Rec J Transp Res Board 1856:60–68spa
dcterms.references7. U.S. Department of Transportation (2004) Archived data management systems—a cross-cutting study. Publication FHWA-JPO-05–044. FHWA, U.S. Department of Transportationspa
dcterms.references8. Yong-chuan Z, Xiao-qing Z, li-ting Z, Zhen-ting C (2011) Traffic congestion detection based on GPS floating-car data. Proc Eng 15:5541–5546spa
dcterms.references9. Thames L, Schaefer D (2016) Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52:12–17spa
dcterms.references10. Viloria A, Neira-Rodado D, Lezama OBP (2019) Recovery of scientific data using intelligent distributed data warehouse. In: ANT/EDI40 2019, pp 1249–1254spa
dcterms.references11. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40 2019, pp 1201–1206spa
dcterms.references12. Alcalá R, Alcalá-Fdez J, Herrera F (2007) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635spa
dcterms.references13. Alpaydin E (2004) Introduction to machine learning. The MIT Press, Massachusettsspa
dcterms.references14. Álvarez P, Hadi M, Zhan C (2010) Using Intelligent transportation systems data archives for traffic simulation applications. Transp Res Rec J Transp Res Board 2161:29–39spa
dcterms.references15. Bizama J (2012) Modelación y simulación mediante un microsimulador de la zona de influencia del Puente Llacolén. Memoria de Título, Universidad del Bio Biospa
dcterms.references16. Levinson H, Rakha H (2010) Analytical procedures for determining the impacts of reliability mitigation strategies. Cambridge Systematics, Texas A&M University, Dowling Associates, Street Smartsspa
dcterms.references17. Cortés CE, Gibson J, Gschwender A, Munizaga M, Zúñiga M (2011) Commercial bus speed diagnosis based on GPS-monitored data. Transp Res Part C 19(4):695–707spa
dcterms.references18. Diker AC (2012) Estimation of traffic congestion level via FN-DBSCAN algorithm by using GPA data. In: 2012 IV international conference problems of cybernetics and informatics (PCI), Baku, Azerbaijanspa
dcterms.references19. Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–1408spa
dcterms.references20. Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1)spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_83spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-7234-0_83


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International