Mostrar el registro sencillo del ítem

dc.contributor.authorSilva Oliveira, Luis Felipespa
dc.contributor.authorSantosh, Mspa
dc.contributor.authorSchindler, Michaelspa
dc.contributor.authorGasparotto, Jucianospa
dc.contributor.authorDotto, Guilherme Luizspa
dc.contributor.authorS. Oliveira, Marcos L.spa
dc.contributor.authorHochella, Jr.spa
dc.date.accessioned2021-01-18T17:40:21Z
dc.date.available2021-01-18T17:40:21Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7709spa
dc.description.abstractNanoscience and technology have enabled better insights into the environmental and health impacts arising from the mining, production and use of fossil and mineral fuels. Here we provide an overview of the nanoscience-based applications and discoveries concerning coal and mineral fuel (i.e., uranium-containing minerals) mining, refining/production, use, and disposal of wastes. These processes result in massive nanoparticle release and secondary nanoparticle generation which have highly significant environmental implications and human health consequences on local, regional, and even global levels. Until recently, very little was known about nanoparticle fractions. Recent advancements and sophistications enable us to detect, collect and study these materials which are roughly 1 nm (0.001 μm) up to several tens of nanometers in size. These materials are known to behave differently (chemically, electrically, and mechanically), relative to their macroscopic equivalents. This is what makes nanoscience fascinating and difficult to predict, underscoring the importance of this emerging new field. For example, nanoparticles associated with coal and mineral fuel influence the release, uptake, and transportation of hazardous elements associated with mining, processing, and waste storage in the surrounding areas. This includes long distance transport down streams, rivers, and eventually to oceans such as from coal and uranium mine drainages. In terms of human health, in all phases of mining, production/refining, use, and waste disposal, the associated nanoparticles can be acquired through oral ingestion, inhalation, and dermal absorption. Inhalation has been shown to be particularly damaging, where lung, heart, kidney, and brain diseases are prevalent. Relative to all other fields of science and engineering associated with coal and mineral fuel mining, production, use, and clean-up efforts, nanoscience, although a much newer field then the rest by comparison, is still greatly under-represented and under-utilized. There is also a continuing gap between what we so far know about the behavior of nanoparticles, and what remains to be discovered.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceGondwana Researchspa
dc.subjectNanoparticles and nanomineralsspa
dc.subjectEnvironmental impactsspa
dc.subjectEnvironmental contaminantsspa
dc.subjectMining activitiesspa
dc.subjectHuman healthspa
dc.titleNanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: A review and perspectivespa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/abs/pii/S1342937X21000149#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gr.2020.12.026spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAbdelouas, A., 2006. Uranium Mill Tailings: Geochemistry, Mineralogy and Environmental Impact. Elements 2, 335–341.spa
dc.relation.referencesAnke, M., Seeber, O., Müller, R., Schäfer, U., Zerull, J., 2009. Uranium transfer in the food chain from soil to plants, animals and man. Geochemistry 69, 75–90.spa
dc.relation.referencesBargar, J.R., Bernier-Latmani, R., Giammar, D.E., Tebo, B.M., 2008. Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation. Elements 4, 407–412.spa
dc.relation.referencesBasak, B.B., Sarkar, B., Sanderson, P., Naidu, R., 2018. Waste mineral powder supplies plant available potassium: Evaluation of chemical and biological interventions. Journal of Geochemical Exploration 186, 114–120.spa
dc.relation.referencesBernhoft, R.A., 2012. Mercury toxicity and treatment: a review of the literature. J Environ Public Health, 460508.spa
dc.relation.referencesBernier-Latmani, R., Veeramani, H. Vecchia, E.D., Junier P., Lexama-Pacheco, J.S., Suvorova, E.I., Sharp, J.O., Wigginton, N.S., Bargar, J.R., 2010. Non-uraninite Products of Microbial U(VI) Reduction Environmental Science &Technology 44, 9456–9462.spa
dc.relation.referencesBloom, M.S., Buck Louis, G.M., Sundaram, R., Maisog, J.M., Steuerwald, A.J., Parsons, P.J., 2015. Birth outcomes and background exposures to select elements, the Longitudinal Investigation of Fertility and the Environment (LIFE). Environ Res 138, 118–129.spa
dc.relation.referencesBriner, W., Murray, J., 2005. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol 27, 135–144.spa
dc.relation.referencesBrugge, D., de Lemos, J.L., Oldmixon, B., 2005. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health 20, 177–193.spa
dc.relation.referencesCalderon-Garciduenas, L., Gonzalez-Maciel, A., Reynoso-Robles, R., Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardon, R., Mukherjee, P.S., Maher, B.A., 2020. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles. The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract likely a key brainstem portal. Environ Res, 110139.spa
dc.relation.referencesCaraballo, M.A., Michel, F.M., Hochella M.F., Jr., 2015. The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 100, 14–25.spa
dc.relation.referencesCariccio, V.L., Sama, A., Bramanti, P., Mazzon, E., 2019. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 187, 341–356.spa
dc.relation.referencesCerqueira, B., Vega, F. A., Silva, L. F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Science of the total environment 421, 220–229spa
dc.relation.referencesCerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of cu2+ and cu2+/pb2+ on a bt horizon surfaces. Journal of hazardous materials, 422–431.spa
dc.relation.referencesCiveira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.spa
dc.relation.referencesCleveland, D., Hinck, J.E., Lankton, J.S., 2021. Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed. Chemosphere 263, 127908.spa
dc.relation.referencesCortes-Ramirez, J., Naish, S., Sly, P.D., Jagals, P., 2018. Mortality and morbidity in populations in the vicinity of coal mining: a systematic review. BMC Public Health 18, 721.spa
dc.relation.referencesCraft, E., Abu-Qare, A., Flaherty, M., Garofolo, M., Rincavage, H., Abou-Donia, M., 2004. Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B Crit Rev 7, 297–317.spa
dc.relation.referencesCutruneo, C., Oliveira, M.L.S., Ward, C., Hower, J., De Brum, I., Sampaio, C., Kautzmann, R., Taffarel, S., Teixeira, E., Silva, L.F., 2014. A mineralogical and geochemical study of three brazilian coal cleaning rejects: demonstration of electron beam applications. International Journal of Coal Geology 130, 33–52.spa
dc.relation.referencesDai, S., Wang, P., Ward, C.R., Tang, Y., Song, X., Jiang, J., Hower, J.C., Li, T., Seredin, V.V., Wagner, N.J., Jiang, Y., Wang, X., Liu, J., 2015. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 152, 19–46.spa
dc.relation.referencesDashner-Titus, E.J., Hoover, J., Li, L., Lee, J.H., Du, R., Liu, K.J., Traber, M.G., Ho, E., Lewis, J., Hudson, L.G., 2018. Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radic Biol Med 124, 484–492.spa
dc.relation.referencesDashner-Titus, E.J., Schilz, J.R., Simmons, K.A., Duncan, T.R., Alvarez, S.C., Hudson, L.G., 2020. Differential response of human T-lymphocytes to arsenic and uranium. Toxicol Lett 333, 269–278.spa
dc.relation.referencesDéjeant, A., Galoisy, L., Royd, R., Calas, G., Boekhout, F., Phrommavanh V., Descostes, M., 2016. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger. Science of the Total Environment 545, 340–352.spa
dc.relation.referencesDewar, D., Harvey, i., Vakil, C., 2013. Uranium mining and health. Can Fam Physician, 469–471.spa
dc.relation.referencesDiehl S.F., Goldhaber M.B., Koenig A.E., Lowers H.A., Ruppert L.F., 2012. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 94, 238–249spa
dc.relation.referencesDonbak, L., Rencuzogullari, E., Yavuz, A., Topaktas, M., 2005. The genotoxic risk of underground coal miners from Turkey. Mutat Res 588, 82–87.spa
dc.relation.referencesDuarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers 10, 927–939.spa
dc.relation.referencesDutta, M., Saikia, J., Taffarel, S. R., Waanders, F. B., de Medeiros, D., Cutruneo, C. M., Saikia, B. K., 2017. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geoscience Frontiers. 8, 1285– 1297.spa
dc.relation.referencesEntwistle, J.A., Hursthouse, A.S., Marinho Reis, P.A., Stewart, A.G., 2019. Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities. Current Pollution Reports 5, 67–83.spa
dc.relation.referencesEpple, M., 2008. From Metal Complexes to Nanominerals : The Formation of Inorganic Nanoparticles on Fibrils of Transferrin. Angew. Chem. Int. Ed., 47, 4960–4961.spa
dc.relation.referencesEspitia-Pérez, L., da Silva, J., Espitia-Pérez, P., Brango, H., Salcedo-Arteaga, S., Hoyos-Giraldo, L.S., de Souza, C.T., Dias, J.F., Agudelo-Castañeda, D., Valdés Toscano, A., Gómez-Pérez, M., Henriques, J.A.P., 2018. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM(10) and PM(2.5) levels. Ecotoxicol Environ Saf 148, 453-466.spa
dc.relation.referencesEssilfie-Dughan, J., Hendry, M.J., Warner, J. and Kotzer, J., 2012. Microscale mineralogical characterization of As, Fe, and Ni in uranium mine tailings. Geochimica et Cosmochimica Acta. 96, 336–352.spa
dc.relation.referencesFinch, R., Murakami, T., 1999. Systematics and Paragenesis of UraniumMinerals Reviews in Mineralogy and Geochemistry 38, 91–180.spa
dc.relation.referencesFinkelman, R.B., Dai, S., French, D., 2019. The importance of minerals in coal as the hosts of chemical elements: A review. International Journal of Coal Geology 212, 103251.spa
dc.relation.referencesFraund, M., Pham, D., Bonanno, D., Harder, T., Wang, B., Brito, J., De Sá, S., Carbonere, S., China, S., Artaxo, P., Martin, S., Pohlker, C., Andreae, M., Laskin, Al., Gilles, M., Moffet, R., 2017. Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere 8, 173–200.spa
dc.relation.referencesFrench, D., Ward, C.R., Butcher, A., 2008. QemSCAN for characterisation of coal and coal utilisation by-products Research Report 93, Co-operative Research Centre for Coal in Sustainable Development (CCSD), Brisbane, 103 pp.spa
dc.relation.referencesGasparotto, J., Chaves, P.R., da Boit Martinello, K., da Rosa-Siva, H.T., Bortolin, R.C., Silva, L.F.O., Rabelo, T.K., da Silva, J., da Silva, F.R., Nordin, A.P., Soares, K., Borges, M.S., Gelain, D.P., Moreira, J.C.F., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol Environ Saf 165, 44–51.spa
dc.relation.referencesGasparotto, J., Chaves, P.R., da Boit Martinello, K., Silva, L.F.O., Gelain, D.P., Fonseca, J.C.M., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem Toxicol 133, 110766.spa
dc.relation.referencesGasparotto, J., Martinello K. B., 2021. Coal as an energy source and its impacts on human health. Energy Geoscience, https://doi.org/10.1016/j.engeos.2020.07.003.spa
dc.relation.referencesGómez, L.P., Ramos, C.G., Oliveira, M.L.S., Silva, L.F.O., 2021. Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal Cleaner Production 279, 123668.spa
dc.relation.referencesGomez, M.A., Hendry, M.J., Koshinsky,J., Essilfie-Dughan, J., Paikaray, S., Chen, J., 2013. Mineralogical Controls on Aluminum and Magnesium in Uranium Mill Tailings: Key Lake, Saskatchewan, Canada. Environmental & T h gy 47 7883−7891.spa
dc.relation.referencesGorby, Y.A., Lovley, D.R., 1992. Enzymatic uranium precipitation. Environmental Science & Technology 26, 205–207.spa
dc.relation.referencesGredilla, A., Fdez-Ortiz de Vallejuelo, S., Rodriguez-Iruretagoiena, A., Gomez, L., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F.O., 2019. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. Journal of Hazardous Materials, 378, 120747.spa
dc.relation.referencesHendryx, M., Zullig, K.J., 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Preventive Medicine 49, 355–359.spa
dc.relation.referencesHendryx, M.A.I.W., Kestrel A., 2013. Increased Risk of Depression for People Living in Coal Mining Areas of Central Appalachia. Ecopsychology 5, 179–187.spa
dc.relation.referencesHochella, Jr., M.F. et al. 2008. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 319, 1631.spa
dc.relation.referencesHochella, Jr., M.F. et al. 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363. DOI: 10.1126/science.aau8299spa
dc.relation.referencesHochella, M.F., Jr., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. American Mineralogist 90, 718–724.spa
dc.relation.referencesHochella, M.F., Jr., Moore, J.N., Golla, U., and Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: Metal - mineral association with implications for transport. Geochimica et Cosmochimica Acta, 63, 3395–3406.spa
dc.relation.referencesHochella, M.F., Jr., Moore, J.N., Putnis, C., Putnis, A., Kasama, T., Eberl, D.D., 2005a. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta 69, 1651–1663.spa
dc.relation.referencesHoupert, P., Frelon, S., Lestaevel, P., Bussy, C., Gourmelon, P., Paquet, F., 2007. Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring. Neurotoxicology 28, 108–113.spa
dc.relation.referencesHower, J.C., Andrews, W.M., Wild, G.D., Eble, C.F., Dulong, F.T., Salter, T.L., 1994. Quality of the Fire Clay coal bed, southeastern Kentucky. J. Coal Qual., 13, 13–26spa
dc.relation.referencesHower, J.C., O`Keefe, J.M.K., Henke, K.R., Wagner, N.J., Copley, G., Blake, D.R., Garrison, T., Oliveira, M.L.S., Kautzmann, R.M., Silva, L.F.O., 2013. Gaseous emissions and sublimates from the Truman shepherd coal fire, Floyd County, Kentucky: a re-investigation following attempted mitigation of the fire. International Journal of Coal Geology 116, 63-74.spa
dc.relation.referencesHund, L., Bedrick, E.J., Miller, C., Huerta, G., Nez, T., Ramone, S., Shuey, C., Cajero, M., Lewis, J., 2015. A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. 178, 1069–1091.spa
dc.relation.referencesIshtiaq, M., Jehan, N., Khan, S.A., Muhammad, S., Saddique, U., Iftikhar, B., Zahidullah, 2018. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res Int 25, 14666–14673.spa
dc.relation.referencesJoaquim, A.C., Lopes, M., Stangherlin, L., Castro, K., Ceretta, L.B., Longen, W.C., Ferraz, F., Perry, I.D.S., 2018. Mental health in underground coal miners. Arch Environ Occup Health 73, 334–343spa
dc.relation.referencesKaksonen, A.H., Lakaniemi, A.M., Tuovinen, O.H., 2020. Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production 264, 121586.spa
dc.relation.referencesKeith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L., Llados, F., Plewak, D., Wohlers, D., Diamond, G., 2013. Toxicological Profile for Uranium, Atlanta (GA).spa
dc.relation.referencesKelepertzis, E., 2014. Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf 100, 258– 265.spa
dc.relation.referencesKhijniak, T. V., Slobodkin, A. I., Coker, V., Renshaw, J. C., Livens, F. R., BonchOsmolovskaya, E. A., Birkeland, N. K., Medvedeva-Lyalikova, N. N., Lloyd, J. R. Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Applied Environmental Microbiology 71, 6423–6426.spa
dc.relation.referencesKolker A., 2012. Minor element distribution in iron disulfides in coal: a geochemical review. Int. J. Coal Geol. 94, 32–43spa
dc.relation.referencesKorchagin, J.; Canerb, L., Bortoluzzi, E.C., 2019. Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production 210, 749–758.spa
dc.relation.referencesKronbauer, M.A., Izquierdo, M., Dai, S., Waanders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliveira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view. Science of the total environment 456, 95–103.spa
dc.relation.referencesKurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Makelainen, I., Vaisanen, S.B., Penttila, I.M., Komulainen, H., 2002. Renal effects of uranium in drinking water. Environ Health Perspect 110, 337–342.spa
dc.relation.referencesKurttio, P., Komulainen, H., Leino, A., Salonen, L., Auvinen, A., Saha, H., 2005. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113, 68–72spa
dc.relation.referencesLandrigan, P., J., 2016. Air pollution and health. The Lancet 2, 1–5.spa
dc.relation.referencesLaney, A.S., Weissman, D.N., 2014. Respiratory diseases caused by coal mine dust. J Occup Environ Med 56 Suppl 10, S18–22.spa
dc.relation.referencesLecomte, A., Cathelineau, M., Deloule, E., Brouand, M., Peiffert, C., LoukolaRuskeeniemi, K., Pohjolainen, E., Lahtinen, H., 2014. Uraniferous bitumen nodules in the Talvivaara Ni–Zn–Cu–Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales. Miner. Deposita, 49, 513–533.spa
dc.relation.referencesLeón-Mejía, G., Espitia-Pérez, L., Hoyos-Giraldo, L.S., Da Silva, J., Hartmann, A., Henriques, J.A., Quintana, M., 2011. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409, 686–691.spa
dc.relation.referencesLeon-Mejia, G., Machado, M.N., Okuro, R.T., Silva, L.F.O., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci Total Environ 625, 589-599.spa
dc.relation.referencesLeon-Mejia, G., Quintana, M., Debastiani, R., Dias, J., Espitia-Perez, L., Hartmann, A., Henriques, J.A., Da Silva, J., 2014. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf 107, 133–139.spa
dc.relation.referencesLewis, J., Hoover, J., MacKenzie, D., 2017. Mining and Environmental Health Disparities in Native American Communities. Curr Environ Health Rep 4, 130–141spa
dc.relation.referencesLin, J., Pan, D., Davis, S.J., Zhang, Q., He, K., Wang, C., Streets, D.G., Wuebbles, D.J., Guan, D., 2014. China's international trade and air pollution in the United States. Proc Natl Acad Sci USA 111, 1736–1741.spa
dc.relation.referencesLiu, B., Peng, T., Sun, H., 2017. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings. Environ. Sci. Pollut. Res., 24, 1–12.spa
dc.relation.referencesLiu, X., Li, Q., Zhang, Y., Yang, Y., Xu, B. and Jiang, T. 2019 Formation Process of the Passivating Products from Arsenopyrite Bioleaching by Acidithiobacillus ferrooxidans in 9K Culture Medium. Metals 9, 1320.spa
dc.relation.referencesLiu, Y., Gupta, R., Sharma, A., Wall, T., Butcher, A., Millier, G., Gottlieb, P., French, D., 2005. Mineral matter–organic matter association characterisation by QEMSCAN and applications in coal utilisation. Fuel 84, 1259–1267spa
dc.relation.referencesLütke, S.F., Oliveira, M.L.S., Silva, L.F.O., Cadaval, T.R.S., Dotto, G.L., 2020. Nanominerals Assemblages and Hazardous Elements Assessment in Phosphogypsum from an Abandoned Phosphate Fertilizer Industry. Chemosphere 256, 127138.spa
dc.relation.referencesMa, M., Wang, R., Xu, L., Xu, M., Liu, S., 2020. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ Int 145, 106107.spa
dc.relation.referencesMadejová, J., 2003. Review: FTIR techniques in clay mineral studies. Vib. Spectrosc., 31, 1–10.spa
dc.relation.referencesMajumder, E.L.W., Wall, J.D., 2017. Bio-transformations of uranium: Chemical or biological processes? Open J. Inorg. Chem. 7, 28–60.spa
dc.relation.referencesMäkinen, J., Wendling, L., Lavonen, T., Kinnunen, P., 2019. Sequential bioleaching of phosphorus and uranium. Minerals 9, 331.spa
dc.relation.referencesManisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 8, 14.spa
dc.relation.referencesMartin, A., Hassan-Loni, Y., Fichtner, A., Stumpf, T., Montavon, G., 2020. An integrated approach combining soil profile, records and tree ring analysis to identify the origin of environmental contamination in a former uranium mine (Rophin, France). Science of the Total Environment 747,141295spa
dc.relation.referencesMartinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Science of the total environment 470, 444–452spa
dc.relation.referencesMcDaniel, D.K., Ringel-Scaia, V.M., Morrison, H.A., Coutermarsh-Ott, S., Council-Troche, M., Angle, J.W., Perry, J.B., Davis, G., Leng, W., Minarchick, V., Yang, Y., Chen, B., Reece, S.W., Brown, D.A., Cecere, T.E., Brown, J.M., Gowdy, K.M., Hochella, M.F. Jr., Allen, I.C., 2019. Pulmonary exposure to Magnéli phase titanium suboxides results in significant macrophage abnormalities and decreased lung function. Frontiers in Immunology 10, 2714.spa
dc.relation.referencesMcGill, B. D., Marlatt, J.L., Matthews, R.B., Sopuck, V.J., Homeniuk, L.A. and Hubregtse, J.J., 1993. The P2 North Uranium deposit, Saskatchewan, Canada. Exploration Mining Geology 2, 321–331.spa
dc.relation.referencesMechi, A.S., D.J, 2010. The environmental Impact of Mining in the state of são Paulo. estudos avançados 24, 209–220.spa
dc.relation.referencesMohanty, B., P., Mahananda, M., R., 2015. Reproductive Health Hazards of Coal mine male Workers in Lakhanpur Open cast mines. International Journal of Biomedical Research 6.spa
dc.relation.referencesMoreno, T., Trechera, P., Querol, X., Wrana, A., Williamson, B. 2019. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology 203, 52–59.spa
dc.relation.referencesMudd, G.M., 2009. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future. Research Report No. RR5. Department of Civil Engineering, Monash University and Mineral Policy Institute.spa
dc.relation.referencesMunawer, M.E., 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining 17, 87–96.spa
dc.relation.referencesMurakami, T., Sato, T., Ohnuki, T., Isobe, H., 2005. Field evidence for uranium nanocrystallization and its implications for uranium transport. Chemical Geology 221, 117–126.spa
dc.relation.referencesNancucheo, I., Johnson, D.B., Lopes, M., Oliveira, G., 2017. Reductive dissolution of a lateritic ore containing rare earth elements (REE) using Acidithiobacillus species. Solid State Phenom., 262, 299–302.spa
dc.relation.referencesNesterenko, A.B., Nesterenko, V.B., Yablokov, A.V., 2009. Chapter II. Consequences of the Chernobyl Catastrophe for Public Health. 1181, 31–220.spa
dc.relation.referencesNeves, M. O., Abreu, M. M., Figueiredo, V., 2012. Environmental Geochemistry and Health volume 34, 181–189.spa
dc.relation.referencesNeves, M.O., Abreu, M.M., Figueiredo, V., 2012. Uranium in vegetable foodstuffs: should residents near the Cunha Baixa uranium mine site (Central Northern Portugal) be concerned? Environ Geochem Health 34, 181–189.spa
dc.relation.referencesNordin, A.P., Da Silva, J., De Souza, C., Niekraszewicz, L.A.B., Dias, J.F., Da Boit, K., Oliveira, M.L.S., Grivicich, I., Garcia, A.L., Silva, L.F., Da Silva, F.R., 2018. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. Journal of Hazardous Materials, 346, 263–272.spa
dc.relation.referencesOikonomopoulos I.K., Perraki M., Tougiannidid N., Perraki T., Kasper H.U., Gurk M. 2015. Clays from Neogene Achlada lignite deposits in Florina basin (Western Macedonia, N. Greece): a prospective resource for the ceramics industry Appl. Clay Sci. 103, 1–9.spa
dc.relation.referencesO'Keefe, J.M.K., Bechtel, A., Christianis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R., Hower, J.C., 2013. On the fundamental difference between coal rank and coal type. Int. J. Coal Geol. 118, 58– 87.spa
dc.relation.referencesOliveira, M. L. S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva, L.F.O., 2019. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mining industry. Journal of Cleaner Production 215, 1140–1148.spa
dc.relation.referencesOliveira, M. L.S., Ward, C.R., Izquierdo, M., Sampaio, C.H., De Brum, I.A.S., Kautzmann, R.M., Sabedot, S., Querol, X., Silva, L.F.O., 2012a. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Science of the Total Environment 430, 34–47.spa
dc.relation.referencesOliveira, M.L., Da Boit, K., Schneider, I., Teixeira, E., Crissien T., Silva, L.F., 2018. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. Journal of Cleaner Production 188, 662-669.spa
dc.relation.referencesOliveira, M.L., Marostega, F., Taffarel, S.R., Saikia, B.K., Waanders, F.B., DaBoit, K., Baruah, B.P., Silva, L.F., 2014. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards. Sci Total Environ 468, 1128–1137.spa
dc.relation.referencesOliveira, M.L.S., Waanders, F. Silva, L., Jasper, A., Mchabe, D., Hatch, R., Hower, J., Sampaio, C. H., 2011. A multi-analytical approach to understand the chemistry of fe-minerals in feed coals and ashes. Coal combustion and gasification products 3, 51–62.spa
dc.relation.referencesOliveira, M.L.S., Ward, Colin R., French, D., Hower, J. C., Querol, X., Silva, L.F.O., 2012b. Mineralogy and leaching characteristics of beneficiated coal products from santa catarina, brazil. International Journal of Coal Geology 94, 314–325.spa
dc.relation.referencesOrem, W.H., Finkelman, R.B.J.T.o.G., 2003. Coal Formation and Geochemistry. Treatise on Geochemistry 7, 407.spa
dc.relation.referencesOthmane, G., Allard, T., Menguy, N., Morin, G., Esteve, I., Fayek, M., and Calas, G., 2013. Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low-temperature uranium deposit (Sierra Peña Blanca, Mexico). American Mineralogist 98, 518–521.spa
dc.relation.referencesPacheco, S.W.A., Quintão L.D., Fabris J.D., 2014. Mössbauer analysis of coal coke samples from Samacá, Boyacá, Colombia. Hyperfine Interact. 224, 271–275.spa
dc.relation.referencesPermana, A., Ward, C.R., Li, Z., Gurba, L.W., 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 116, 185–207.spa
dc.relation.referencesPerret, J.L., Plush, B., Lachapelle, P., Hinks, T.S., Walter, C., Clarke, P., Irving, L., Brady, P., Dharmage, S.C., Stewart, A., 2017. Coal mine dust lung disease in the modern era. Respirology 22, 662–670.spa
dc.relation.referencesPidchenko, I., Bauters, S., Sinenko, I., Baker, R.J., Kvashnina, K.O., 2020. A multi-technique study of altered granitic rock from the Krunkelbach Valley uranium deposit, Southern Germany. RSC Advances 10, 25529–25539spa
dc.relation.referencesQuispe, D., Pérez-López, R., Silva, L.F., Nieto, J., 2012. Changes in mobility of hazardous elements during coal combustion in santa catarina power plant (Brazil). Fuel, 94, 495–503.spa
dc.relation.referencesRamos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production 142, 2700–2706.spa
dc.relation.referencesRen, B., Zhou, Y., Hursthouse, A.S., Deng, R., 2017. Research on the characteristics and mechanism of the cumulative release of antimony from an antimony smelting slag stacking area under rainfall leaching. Anal, J., Methods Chem.spa
dc.relation.referencesRibeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-sSEM/EDS, HR-TEM/EDS and TOF-SIMS studies of micron- to nano-particles in anthracite fly ash. Science of the total environment 452, 98-107.spa
dc.relation.referencesRibeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from portugal. Science of the total environment 408, 6032-6041.spa
dc.relation.referencesRiley, K.W., French, D.H., Farrell, O.P., Wood, R.A., Huggins, F.E., 2012. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 94, 214-224.spa
dc.relation.referencesRobertson, J., Hendry, M.J., Essilfie-Dughan, J., Chen, J.J., 2016. Precipitation of aluminum and magnesium secondary minerals from uranium mill raffinate (pH 1.0-10.5) and their controls on aqueous contaminants. Applied Geochemistry 64, 30–42.spa
dc.relation.referencesRodriguez-Iruretagoiena, A., De Vallejuelo, S., De Diego, A., De Leão, F., De Medeiros, D., Oliveira, M., Taffarel, S., Arana, G., Madariaga, J., Silva, L.F., 2016. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Science of the Total Environment 565, 721– 729.spa
dc.relation.referencesRovira, J.S., Ma, N.M, Domingo, J.L., 2018. Contamination by Coal Dust in the Neighborhood of the Tarragona Harbor (Catalonia, Spain): A Preliminary Study. The Open Atmospheric Science Journal 12, 14–20.spa
dc.relation.referencesSadowski, Z., Sklodowska, A., 2016. UO2 nanoparticles synthesis from leaching solutions on the hematite support. Annales Universitatis Maria CurieSklowski A Lublin-Polonia 10.17951/aa.2016.71.1.79 VOL. LXXI, 1 SECTIO AAspa
dc.relation.referencesSahu, H.B., Prakash, N., Jayanthu, S., 2015. Underground Mining for Meeting Environmental Concerns – A Strategic Approach for Sustainable Mining in Future. Procedia Earth and Planetary Science 11, 232–241.spa
dc.relation.referencesSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers, 9, 863–875.spa
dc.relation.referencesSaikia, M., Tonkeswar, D., Nikalabh, D., Fan, X., Silva, L.F.O., Saikia, B.K., 2020. Formation of Carbon Quantum Dots and Graphene Nanosheets from Different Abundant Carbonaceous Materials. Diamond and Related Materials 106, 107813spa
dc.relation.referencesSánchez-Peña, N.E., Narváez-Semanate, J. L., Pabón-Patiño, D., FernándezMera, J. E., Oliveira, M. L., Da Boit, K., Tutikian B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 191, 1048–1055.spa
dc.relation.referencesSanchís, J., Boovi', D., Al-Harbi, N.A., Silva, L.F., Farré, M., Barceló, D., 2013. Quantitative trace analysis of fullerenes in river sediment from spain and soils from saudi arabia. Analytical and Bioanalytical Chemistry 405, 5915–5923spa
dc.relation.referencesSanchís, J., Oliveira, L.F., De Leão, F., Farré, M., Barceló, D., 2015. Liquid chromatography-atmospheric pressure photoionization-orbitrap analysis of fullerene aggregates on surface soils and river sediments from santa catarina (brazil). Science of the Total Environment 505, 172–179.spa
dc.relation.referencesSavabieasfahani, M., Ahamadani, B.F., Damghani, M.A., 2020. Living near an active U.S. military base in Iraq is associated with significantly higher hair thorium and increased likelihood of congenital anomalies in infants and children. Environ Pollut 256, 113070.spa
dc.relation.referencesSchindler, M., Durocher, J., Kotzer, T.K., Hawthorne, F.C., 2012. Uraniumbearing phases in mine tailings of Northern Canada: Products of the interaction between leachate/raffinate and tailings material. Applied Geochemistry 29, 151–161spa
dc.relation.referencesSchindler, M., Fayek, M and Hawthorne, F.C., 2010. Uranium in opaline rockcoatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochimica et Cosmochimica Acta 74, 187–202.spa
dc.relation.referencesSchindler, M., Legrand, C.A., Hochella, M.F., 2015. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale. Geochimica et Cosmochimica Acta 153, 15–36spa
dc.relation.referencesSchindler, M., Lussier, A.J. Bellrose, J., Rouvimov, S., Burns, P.C., Kyser, K. 2017. A nano-mineralogical study of samples from the Matoush Uranium ore deposit: Further evidence for the mobilization and coalescence of uraninite nanoparticles. American Mineralogist 102, 1776–1787.spa
dc.relation.referencesSehn, J., De Leão, F., Da Boit, K., Oliveira M., Hidalgo G., Sampaio C., Silva, L.F., 2016. Nanomineralogy in the real world: a perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 147, 439–443spa
dc.relation.referencesShelley, R., Kim, N.S., Parsons, P.J., Lee, B.K., Agnew, J., Jaar, B.G., Steuerwald, A.J., Matanoski, G., Fadrowski, J., Schwartz, B.S., Todd, A.C., Simon, D., Weaver, V.M., 2014. Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol 24, 58–64spa
dc.relation.referencesShi, R., Meacham, S., Davis, G.C., You, W., Sun, Y., Goessl, C., 2019. Factors influencing high respiratory mortality in coal-mining counties: a repeated cross-sectional study. BMC Public Health 19, 1484.spa
dc.relation.referencesSilva, L.F., Da Boit, K., Oliveira, M., Hower, J., 2010b. Fullerenes and metallofullerenes in coal-fired stoker fly ash. Coal combustion and gasification products 2, 1–11.spa
dc.relation.referencesSilva, L.F., Izquierdo, M., Querol, X., Finkelman, R.B., Oliveira, M.L., Wollenschlager, M., Towler, M., Pérez-López, R., Macias, F., 2011a. Leaching of potential hazardous elements of coal cleaning rejects. Environ Monit Assess 175, 109–126.spa
dc.relation.referencesSilva, L.F., O, Ward, C., R, Hower, J., C, Izquierdo, M., Waanders, F., Oliveira, M., L,S, Li, Z., Hatch, R., S, Querol, X., 2010c. Mineralogy and Leaching Characteristics of Coal Ash from a Major Brazilian Power Plant. Coal Combustion and Gasification Productsspa
dc.relation.referencesSilva, L.F., Querol, X., Da Boit, K., Fdez-Ortiz De Vallejuelo S., Madariaga, J.M., 2011a. Brazilian coal mining residues and sulphide oxidation by fenton s reaction: an accelerated weathering procedure to evaluate possible environmental impact. Journal of hazardous materials, 186, 516–525.spa
dc.relation.referencesSilva, L.F., Wollenschlager, M., Oliveira, M., 2011b. A preliminary study of coal mining drainage and environmental health in the santa catarina region, brazil. Environmental geochemistry and health, 33, 55-65.spa
dc.relation.referencesSilva, L.F.O., Crissien, T.J., Milanes, C., Sampaio, C.H., 2020c. A ThreeDimensional Nanoscale Study in Selected Coal Mine Drainage. Chemosphere 248, 125946.spa
dc.relation.referencesSilva, L.F.O., Crissien, T.J., Schneider, I.L., Blanco, É.P., Sampaio, C.H., 2020d. Nanometric particles of high economic value in coal fire region: Opportunities for social improvement. Journal of Cleaner Production 256, 120480.spa
dc.relation.referencesSilva, L.F.O., Crissien, T.J., Tutikian, B. F., Sampaio, C.H., 2020b. Rare Earth Elements and carbon nanotubes in coal mine around spontaneous combustions. Journal of Cleaner Production 253, 120068.spa
dc.relation.referencesSilva, L.F.O., da Boit, K., 2011. Nanominerals and Nanoparticles in Feed Coal and Bottom Ash: Implications for Human Health Effects. Environ Monit Assess 174, 187–197spa
dc.relation.referencesSilva, L.F.O., Hower, J., Izquierdo, M., Querol, X., 2010a. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Science of the Total Environment 408, 5117–5122.spa
dc.relation.referencesSilva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower, J.C., 2012a. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in chinese anthracitederived fly ash. Science of the Total Environment 419, 250–264.spa
dc.relation.referencesSilva, L.F.O., Oliveira M.L.S., Philippi, V., Serra, C., Dai, S., Xue, W., Chen, W., O'keefe, J.M.K., Romanek, C.S., Hopps, S.G., Hower, J.C., 2012b. Geochemistry of carbon nanotube assemblages in coal fire soot, ruth mullins fire, perry county, kentucky. International journal of Coal Geology 94, 206–213.spa
dc.relation.referencesSilva, L.F.O., Oliveira, M.L.S., da Boit, K.M., Finkelman, R.B., 2009. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ Geochem Health 31, 475– 485.spa
dc.relation.referencesSilva, L.F.O., Oliveira, M.L.S., Sampaio, C.H., De Brum, I.A.S., Hower, J.C., 2013. Vanadium and nickel speciation in pulverized coal and petroleum coke co-combustion. Energy & Fuels 27, 1194–1203.spa
dc.relation.referencesSilva, Luis F.O., Crissien, T. J., Sampaio, C. H., Hower, J. C., Dai, S., 2020a. Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel 263, 116740.spa
dc.relation.referencesSouidi, M., Gueguen, Y., Linard, C., Dudoignon, N., Grison, S., Baudelin, C., Marquette, C., Gourmelon, P., Aigueperse, J., Dublineau, I., 2005. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat. Toxicology 214, 113–122.spa
dc.relation.referencesStanton, R.W., Finkelman, R.B., 1979. Petrographic analysis of bituminous coal: optical and SEM identification of constituents. Scan. Electron Microsc., 1, 465–471.spa
dc.relation.referencesSumant, A., Lichtner, P.C., Ali., A.S. González-Pinzó, R., Blake, J.M., Cerrato, J.M., 2017. Reactive transport of U and V from abandoned uranium mine wastes. Environmental Science and Technology 51, 12385-12393spa
dc.relation.referencesSuzuki, Y., Kelly, S.D., Kemner, K.M., Banfield, J.F., 2002. Nanometre-size products of uranium bioreduction. Nature 419, 134.spa
dc.relation.referencesSuzuki, Y., Mukai, H., Ishimura, T., Yokoyama, T.D., Sakata, S., Hirata, T., Iwatsuki, T., and Mizuno, T., 2016. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer. Scientific Reports 6, 22701.spa
dc.relation.referencesTang, R.K., Wang, L., Orme, J., 2004. Dissolution at the nanoscale: Selfpreservation of biominerals. Angew Chem Int Ed 43, 2697–2701.spa
dc.relation.referencesTaylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology Gebruder Borntraeger, Berlin, (704 pp.)spa
dc.relation.referencesTiwary, R.K., 2001. Environmental Impact of Coal Mining on Water Regime and Its Management. Water, Air, and Soil Pollution 132, 185–199.spa
dc.relation.referencesTrechera, P., Moreno, T., Córdoba, P., Kelly, F., Querol, X. 2020. Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. Journal of Hazardous Materials 399, 15.spa
dc.relation.referencesUlrich, K-U, Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R., Giammar, D.E., 2008. Dissolution of biogenic and synthetic UO2 under varied reducing conditions. Environmental Science & Technology 42, 5600–5606spa
dc.relation.referencesUtsunomiya, S., Jensen, K., Keller, G.J., Ewing, R.C., 2002. Uraninite and Fullerene in Atmospheric Particulates 36, Environmental Science & Technology 9, 4943–4947.spa
dc.relation.referencesWaanders, F.B., Mulaba-Bafubiandi, A.F., Lodya, L., 2014. The South African industry use of Mössbauer spectroscopy to solve operational problems. Hyperfine Interact. 226, 721–735.spa
dc.relation.referencesWade-Gueye, N.M., Delissen, O., Gourmelon, P., Aigueperse, J., Dublineau, I., Souidi, M., 2012. Chronic exposure to natural uranium via drinking water affects bone in growing rats. Biochim Biophys Acta 1820, 1121–1127.spa
dc.relation.referencesWang, J.K., Radovan, G., Kuang, S., Barbosa. C., Brito, H.M.J., Carbone, J., 2016. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature 539, 416–419.spa
dc.relation.referencesWang, Q., Li, L., Long, C.-L., Yang, Z.-G., Zhou, Y., 2020. Detection of C60 in environmental water using dispersive liquid–liquid micro-extraction followed by high-performance liquid chromatography. Environmental Technology (United Kingdom) 41, 1015–1022.spa
dc.relation.referencesWang, S., Ran, Y., Lu, B., Li, J., Kuang, H., Gong, L., Hao, Y., 2020. A Review of Uranium-Induced Reproductive Toxicity. Biological Trace Element Research 196, 204–213.spa
dc.relation.referencesWang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., Zheng, Z., 2019. Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour. Technol. 281, 66–71.spa
dc.relation.referencesWang, X.S., 2014. Mineralogical and chemical composition of magnetic fly ash fraction. Environ. Earth Sci. 71, 1673–1681.spa
dc.relation.referencesWang, Y., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes, M., Osman, A.A.A. Geipel, G., Bernier-Latmani1, R., 2013. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nature Communications 4, 2942.spa
dc.relation.referencesWard, C., 2016. Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology 165,1–27.spa
dc.relation.referencesWard, C.R., 2013. Coal geology. Elias S. (Ed.), Reference Modules in Earth Systems and Environmental Sciences, 30 pp.spa
dc.relation.referencesWard, C.R., Matulis, C.E., Taylor, J.C., Dale, L.S., 2001. Quantification of mineral matter in Argonne Premium Coals using interactive Rietveldbased X-ray diffraction. Int. J. Coal Geol. 46, 67–82.spa
dc.relation.referencesWarlo, M., Wanhainen, C., Martinsson, O., Karlsson, P., 2020. Mineralogy and character of the Liikavaara Östra Cu-(W-Au) deposit, northern Sweden. GFF 142(3), pp. 169-189.spa
dc.relation.referencesWHO, 2005. Guidelines for drinking-water quality, 4th edition. https://www.who.int/publications/i/item/9789241549950 4, 564.spa
dc.relation.referencesWilcox, J., Wang, B., Rupp, E., Taggart, R., Hsu-Kim, H., Oliveira, M., Cutruneo, C., Taffarel, S., Silva, L.F., Hopps, S., Thomas, G., Hower, J., 2015. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: environmental processes recorded at the macro and nanometer scale. Energy & Fuels, 29 7168–7177.spa
dc.relation.referencesWilliamson, A.L., Schindler, M. and Spiers, G.A., 2017. Retention of Uranium, Throrium and Rare Earth Elements in authigenic phases during biogeochemical leaching experiments. Hydrometallurgy 177, 9–20.spa
dc.relation.referencesYablokov, A.V., Nesterenko, V.B., Nesterenko, A.V., 2009. Consequences of the Chernobyl catastrophe for public health and the environment 23 years later. Ann N Y Acad Sci 1181, 318–326spa
dc.relation.referencesYang, Y., Chen, B., Hower, J., Schindler, M., Winkler, C., Brandt, J., Di Giulio, R., Liu, M., Fu, Y., Zhang, L., Priya, S., Hochella, M.F. Jr., 2017. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal burning. Nature Communications. For immediate open access, go to http://dx.doi.org/10.1038/s41467-017- 00276-2.spa
dc.relation.referencesYang, Y., Ram, R., Pownceby, M.I., Chen, M. Bioleaching of synthetic uranium minerals: uraninite, pitchblende, coffinite, brannerite and betafite. Proceedings of the 23rd International Biohydrometallurgy Symposium 20-23 October, 2019.spa
dc.relation.referencesYang, Z., Li, Y., Ning, Y., Yang, S., Tang, Y., Zhang, Y., Wang, X., 2018. Effects of oxidant and particle size on uranium leaching from coal ash. J. Radioanal. Nucl. Chem. 317, 801–810spa
dc.relation.referencesYapar, K., Cavusoglu, K., Oruc, E., Yalcin, E., 2010. Protective role of Ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice. J Med Food 13, 179–188.spa
dc.relation.referencesYin, M., Tsang, D.C.W., Sun, J., Xiao, T., Chen, D., 2020. Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere 250, 126315.spa
dc.relation.referencesYoreo, J.J., Pupa, U.P.A., Nico, G., 2015. Crystallization by particle attachment. Science, 349, 6247.spa
dc.relation.referencesZamora, M.L., Zielinski, J.M., Moodie, G.B., Falcomer, R.A., Hunt, W.C., Capello, K., 2009. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community. Arch Environ Occup Health 64, 228–241.spa
dc.relation.referencesZhang X., 2020. Crystallization via Nonclassical Pathways Volume 1: Nucleation, Assembly, Observation & Application. American Chemical Society, DOI: 10.1021/bk-2020-1358.spa
dc.relation.referencesZhang, W., Liu, W., Bao, S., Liu, H., Zhang, Y., Zhang, B., Zhou, A., Chen, J., Hao, K., Xia, W., Li, Y., Sheng, X., Xu, S., 2020. Association of adverse birth outcomes with prenatal uranium exposure: A population-based cohort study. Environ Int 135, 105391.spa
dc.relation.referencesZhou, Y., Ren, B., Hursthouse, A.S., Zhou, S., 2019. Antimony ore tailings: heavy metals, chemical speciation, and leaching characteristics. Pol. J. Environ. Stud., 28, 485–495.spa
dc.relation.referencesZychowski, K.E., Kodali, V., Harmon, M., Tyler, C.R., Sanchez, B., Ordonez Suarez, Y., Herbert, G., Wheeler, A., Avasarala, S., Cerrato, J.M., Kunda, N.K., Muttil, P., Shuey, C., Brearley, A., Ali, A.M., Lin, Y., Shoeb, M., Erdely, A., Campen, M.J., 2018. Respirable Uranyl-VanadateContaining Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol Sci 164, 101– 114.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International