Show simple item record

dc.creatorSilva, Jesús
dc.creatorGarcia Cervantes, Evereldys
dc.creatorCabrera, Danelys
dc.creatorGarcía, Silvia
dc.creatorBinda, María Alejandra
dc.creatorPineda Lezama, Omar Bonerge
dc.creatorLamby Barrios, Juan Guillermo
dc.creatorVargas Mercado, Carlos
dc.date.accessioned2021-01-18T20:48:16Z
dc.date.available2021-01-18T20:48:16Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7710
dc.description.abstractSince virtual courses are asynchronous and non-presential environments, the following of student tasks can be a hard work. Virtual Education and Learning Environments (VELE) often provide tools for this purpose (Zaharia et al. in Commun ACM 59(11):56-65, 2016, [1]). In Moodle, some plugins take information about students’ activities, providing statistics to the teacher. This information may not be accurate with respect to leadership ability or risk of abandonment. The use of artificial neural networks (ANNs) can help predict student behavior and draw conclusions at early stages of the learning process in a VELE. This paper proposes a plugin for Moodle that analyzes social metrics through graph theory. This article outlines the advantages of integrating an ANN into this development that complements the use of the graph to provide rich conclusions about student performance in a Moodle virtual course.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectVirtual education environmentsspa
dc.subjectSupervised learningspa
dc.subjectMoodlespa
dc.subjectNeural networksspa
dc.titleModel for predicting academic performance in virtual courses through supervised learningspa
dc.typearticlespa
dcterms.references1. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65spa
dcterms.references2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th international conference on very large data bases, VLDB, pp 487–499spa
dcterms.references3. Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd annual meeting of the association for computational linguistics: system demonstrations, pp 55–60spa
dcterms.references4. Hahsler M, Karpienko R (2017) Visualizing association rules in hieralchical groups. J Bus Econ 87:317–335spa
dcterms.references5. Yuan M, Ouyang Y, Xiong Z, Sheng H (2013) Sentiment classification of web review using association rules. In: Ozok AA, Zaphiris P (eds) Online communities and social computing. OCSC 2013. Lecture notes in computer science, vol 8029. Springer, Berlinspa
dcterms.references6. Silverstein C, Brin S, Motwani R, Ullman J (2000) Scalable techniques for mining causal structures. Data Min Knowl Disc 4(2–3):163–192spa
dcterms.references7. Amelec V, Carmen V (2015) Relationship between variables of performance social and financial of microfinance institutions. Adv Sci Lett 21(6):1931–1934spa
dcterms.references8. Amelec V, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206spa
dcterms.references9. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data, Springer, Cham, pp 3–11spa
dcterms.references10. Cagliero L, Fiori A (2012) Analyzing Twitter user behaviors and topic trends by exploiting dynamic rules. In: Behavior computing: modeling, analysis, mining and decision. Springer, Berlin, pp 267–287spa
dcterms.references11. Erlandsson F, Bródka P, Borg A, Johnson H (2016) Finding influential users in social media using association rule learning. Entropy 18:16spa
dcterms.references12. Meduru M, Mahimkar A, Subramanian K, Padiya PY, Gunjgur PN (2017) Opinion mining using twitter feeds for political analysis. Int J Comput (IJC) 25(1):116–123spa
dcterms.references13. Abascal-Mena R, López-Ornelas E, Zepeda-Hernández JS (2013) User generated content: an analysis of user behavior by mining political tweets. In: Ozok AA, Zaphiris P (eds) Online communities and social computing. OCSC 2013. Lecture notes in computer science, vol 8029. Springer, Berlinspa
dcterms.references14. Dehkharghani R, Mercan H, Javeed A, Saygin Y (2014) Sentimental causal rule discovery from Twitter. Expert Syst Appl 41(10):4950–4958spa
dcterms.references15. Oladokun VO, Adebanjo AT, Charles-Owaba OE (2008) Predicting students’ academic performance using artificial neural network: a case study of an engineering course. Pac J Sci Technol 9(1):72–79spa
dcterms.references16. Finkel JR, Grenager T, Manning C (2005) Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43nd annual meeting of the association for computational linguistics (ACL 2005) pp 363–370spa
dcterms.references17. Halachev P (2012) Prediction of e-learning efficiency by neural networks. Cybern Inf Technol 12(2):98–108spa
dcterms.references18. Collins M (2002) Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In: Proceedings of the 2002 conference on empirical methods in natural language processing (EMNLP 2002), pp 1–8spa
dcterms.references19. Amelec V et al (2019) Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput Sci 155:575–580spa
dcterms.references20. Torres Samuel M, Vásquez C, Viloria A, Hernández Fernandez L, Portillo Medina R (2018) Analysis of patterns in the university Word Rankings Webometrics, Shangai, QS and SIRScimago: case Latin American. Lecture notes in computer science (Including subseries Lecture Notes in Artificial Intelligent and Lecture Notes in Bioinformatics)spa
dcterms.references21. Jacznik R, Tassara M, D’Uva I, Baldino G (2016) Herramienta de software pedagógica para identificar relaciones y comportamientos en entornos de educación virtual, CyTalspa
dcterms.references22. Lykourentzou I, Giannoukos I, Mpardis G, Nikolopoulos V, Loumos V (2009) Early and dynamic student achievement prediction in e-learning courses using neural networks. J Am Soc Inf Sci Technol 60(2):372–380spa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_92spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-7234-0_92
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International