Show simple item record

dc.creatorSilva, Jose
dc.creatorVarela Izquierdo, Noel
dc.creatorVaras, Jesus
dc.creatorLezama, Omar
dc.creatorMaco, José
dc.creatorVillón, Martín
dc.date.accessioned2021-01-19T20:36:32Z
dc.date.available2021-01-19T20:36:32Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7717
dc.description.abstractThe problem of timetabling events is present in various organizations such as schools, hospitals, transportation centers. The purpose of timetabling activities at a university is to ensure that all students attend their required subjects in accordance with the available resources. The set of constraints that must be considered in the design of timetables involves students, teachers and infrastructure. This study shows that acceptable solutions are generated through the application of genetic, memetic and immune system algorithms for the problem of timetabling. The algorithms are applied to real instances of the University of Mumbai in India and their results are comparable with those of a human expert.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceAdvances in Intelligent Systems and Computingspa
dc.subjectGenetic algorithmspa
dc.subjectMemetic algorithmspa
dc.subjectImmune systemspa
dc.subjectFaculty timetablingspa
dc.subjectCourse timetablingspa
dc.titleComparison of bioinspired algorithms applied to the timetabling problemspa
dc.typearticlespa
dcterms.references1. Jorge AS, Martin CJ, Hugo T (2010) Academic timetabling design using hyper—heuristics. Springer, Berlin, pp 43–56spa
dcterms.references2. Asratian AS, de Werra D (2002) A generalized class–teacher model for some timetabling problems. University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science, & Mathematics. Eur J Oper Res 531–542spa
dcterms.references3. Soria-Alcaraz Jorge A, Martín C, Héctor P, Sotelo-Figueroa MA 2013) Comparison of metaheuristic algorithms with a methodology of design for the evaluation of hard constraints over the course timetabling problem. Springer, Berlin, pp 289–302.spa
dcterms.references4. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018.spa
dcterms.references5. De Werra D (1985) An introduction to timetabling. Eur J Oper Res 19(2):151–162spa
dcterms.references6. Obit JH, Ouelhadj D, Landa-Silva D, Vun TK, Alfred R (2011) Designing a multi-agent approach system for distributed course timetabling, pp 103–108.spa
dcterms.references7. Lewis MRR (2006) Metaheuristics for university course timetabling. Ph.D. Thesis, Napier Universityspa
dcterms.references8. Deng X, Zhang Y, Kang B, Wu J, Sun X, Deng Y (2011) An application of genetic algorithm for university course timetabling problem, pp 2119–2122./spa
dcterms.references9. Mahiba AA, Durai CAD (2012) Genetic algorithm with search bank strategies for university course timetabling problem. Procedia Eng 38:253–263spa
dcterms.references10. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data. Springer, Cham, pp 3–11spa
dcterms.references11. Nguyen K, Lu T, Le T, Tran N (2011) Memetic algorithm for a university course timetabling problem, pp. 67–71.spa
dcterms.references12. Aladag C, Hocaoglu G (2007) A tabu search algorithm to solve a course timetabling problem. Hacettepe J Math Stat, pp 53–64spa
dcterms.references13. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program (report 826)spa
dcterms.references14. Frausto-Solís J, Alonso-Pecina F, Mora-Vargas J (2008) An efficient simulated annealing algorithm for feasible solutions of course timetabling. Springer, Berlin, pp 675–685spa
dcterms.references15. Joudaki M, Imani M, Mazhari N (2010) Using improved memetic algorithm and local search to solve university course timetabling problem (UCTTP). Islamic Azad University, Doroudspa
dcterms.references16. Thepphakorn T, Pongcharoen P, Hicks C (2014) An ant colony based timetabling tool. Int J Prod Econ 149:131–144.spa
dcterms.references17. Soria-Alcaraz J, Ochoa G, Swan J, Carpio M, Puga H, Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem. Eur J Oper Res 77–86.spa
dcterms.references18. Wolpert H, Macready G (1996) No free lunch theorems for search. Technical report, The Santa Fe Institute, vol 1spa
dcterms.references19. Lai LF, Wu C, Hsueh N, Huang L, Hwang S (2008) An artificial intelligence approach to course timetabling. Int J Artif Intell Tools 223–240.spa
dcterms.references20. McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R (2012) A new model for automated examination timetabling. Ann Oper Res 291–315spa
dcterms.references21. Conant-Pablos SE et al (2009) Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling. In: MICAI Mexican international conference on artificial intelligence, vol 1, pp 408–419spa
dcterms.references22. Carpio-Valadez JM (2006) Integral model for optimal assignation of academic tasks. In: Encuentro de investigacion en ingenieria electrica. ENVIE, Zacatecas, pp 78–83spa
dcterms.references23. Soria-Alcaraz JA, Martin C, Héctor P, Hugo T, Laura CR, Sotelo-Figueroa MA (2013) Methodology of design: a novel generic approach applied to the course timetabling problem, pp 287–319.spa
dcterms.references24. Talbi E (2009) Metaheuristics: from design to implementation. Wiley, USspa
dcterms.references25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co, Readingspa
dcterms.references26. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Pressspa
dcterms.references27. Abdoun O, Abouchabaka J (2011) A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. Int J Comput Applspa
dcterms.references28. Derrac J, García S (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence. In: Swarm and Evolutionary Computationspa
dcterms.references29. Azuaje F (2003) Review of “Artificial immune systems: a new computational intelligence approach.” J Neural Netw 16(8):1229–1229spa
dcterms.references30. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33:1455–1465spa
dcterms.references31. Lü Z, Hao J (2010) Adaptive tabu search for course timetabling. Eur J Oper Res 235–244spa
dcterms.references32. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-7907-3_32spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-7907-3_32


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International