Mostrar el registro sencillo del ítem

dc.contributor.authorCastellar Ortega, Grey Ceciliaspa
dc.contributor.authorCely Baustista, Maria Mercedesspa
dc.contributor.authorCARDOZO ARRIETA, BEATRIZ MARIAspa
dc.contributor.authorAngulo, Edgardospa
dc.contributor.authorMendoza Colina, Evert Jesusspa
dc.contributor.authorZambrano-Arevalo, Alejandra M.spa
dc.contributor.authorJaramillo Colpas, Javier Enriquespa
dc.contributor.authorRosales Diaz , Cristian Leroyspa
dc.date.accessioned2021-01-27T15:02:20Z
dc.date.available2021-01-27T15:02:20Z
dc.date.issued2020
dc.identifier.issn0187-8336spa
dc.identifier.issn2007-2422spa
dc.identifier.urihttps://hdl.handle.net/11323/7770spa
dc.description.abstractThe presence of dyes in water bodies inhibits the penetration of light, affecting the flora and fauna of these ecosystems, which is why, greater efforts are made to eliminate them before being poured. This study allowed the removal of the direct navy-blue dye (DNB), using activated carbon prepared from coffee beans and H3PO4. The experimental methodology began with the preparation of three types of activated carbon by varying the concentration of H3PO4 (20, 40 and 60% m/v). Texture properties were evaluated by adsorption-desorption isotherms with N2 to 77 K, the identification and quantification of organic functional groups, mainly acids, with FTIR and the Boehm method, respectively. Batch adsorption experiments were performed by varying the initial dye concentration (5, 10, 50, 75, 100 and 200 mg/dm3) to 25 °C and, the adsorption kinetics was determined. Both coffee beans and activated carbons have an acidic nature with surface area development between 519 and 771 m2/g. With respect to the batch study, a monolayer and multilayer growth was observed on a heterogeneous surface. Activated carbon prepared with 20% of H3PO4 recorded the highest removal capacity with a value of 25.8 mg/g. The kinetic model of pseudo second order was the one that best fit to the experimental data (R2 > 0.98). It can be concluded that the coffee bean treated with H3PO4 is an efficient adsorbent to remove DNB from aqueous solutions.spa
dc.description.abstractLa presencia de colorantes en los cuerpos de agua inhibe la penetración de la luz, afectando la flora y la fauna de estos ecosistemas, razón por la cual se hacen cada vez esfuerzos mayores para eliminarlos antes de ser vertidos. Este estudio permitió remover el colorante azul marino directo (AMD), empleando carbón activado preparado a partir de la borra de café y H3PO4. La metodología experimental inició con la preparación de tres tipos de carbón activado, variando la concentración de H3PO4 (20, 40 y 60% m/v). Las propiedades de textura se evaluaron mediante isotermas de adsorción-desorción con N2 a 77 K; la identificación y cuantificación de grupos funcionales orgánicos, en especial ácidos, con FTIR, y el método de Boehm, respectivamente. Se realizaron experimentos de adsorción por lote, variando la concentración inicial del colorante (5, 10, 50, 75, 100 y 200 mg/dm3) a 25 °C y se determinó la cinética de adsorción. Tanto la borra de café como los carbones activados tienen naturaleza ácida con desarrollo de áreas superficiales entre 519 y 771 m2/g. Con respecto al estudio por lote, se observó un crecimiento en monocapa y multicapa sobre una superficie heterogénea. El carbón activado preparado con 20% de H3PO4 registró la mayor capacidad de remoción, con un valor de 25.8 mg/g. El modelo cinético de pseudo segundo orden fue el que mejor se ajustó a los datos experimentales (R2 > 0.98). Se puede concluir que la borra de café tratada con H3PO4 es un adsorbente eficiente para eliminar AMD de soluciones acuosas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceTecnologia y Ciencias del Aguaspa
dc.subjectActivated carbonspa
dc.subjectCharacterization techniquesspa
dc.subjectphosphoric acidspa
dc.subjectAdsorption isothermspa
dc.subjectAdsorption kineticsspa
dc.subjectCarbón activadospa
dc.subjectTécnicas de caracterizaciónspa
dc.subjectÁcido fosfóricospa
dc.subjectIsoterma de adsorciónspa
dc.subjectCinética de adsorciónspa
dc.titleRemoval of the direct navy-blue dye on modified coffee beanspa
dc.typeArtículo de revistaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doiDOI: 10.24850/j-tyca-2020-04-01spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAhmad, A., Loh, M., & Aziz, J. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and Pigments, 75(2), 263-272.spa
dc.relation.referencesAhmad, M. A., & Alrozi, R. (2010). Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chemical Engineering Journal, 165(3), 883-890.spa
dc.relation.referencesAhmad, A. A., & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials, 175(1-3), 298-303.spa
dc.relation.referencesAhsan, M. A., Jabbari, V., Islam, M. T., Kim, H., Hernandez-Viezcas, J. A., Lin, Y., Díaz-Moreno, C. A., Lopez, J., Gardea-Torresdey, J., & Noveron, J. C. (2018). Green synthesis of a highly efficient biosorbent for organic, pharmaceutical, and heavy metal pollutants removal: Engineering surface chemistry of polymeric biomass of spent coffee waste. Journal of Water Process Engineering, 25, 309319.spa
dc.relation.referencesAnastopoulos, I., Karamesouti, M., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for coffee adsorbents. Journal of Molecular Liquids, 229, 555-565.spa
dc.relation.referencesAlbis, A., Martinez, J., & Santiago, P. (2017). Remoción de zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): experimentos en columna. Prospectiva, 15(1), 16-28.spa
dc.relation.referencesAljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381-S3393.spa
dc.relation.referencesBaskaralingam, P., Pulikesi, M., Ramamurthi, V., & Sivanesan, S. (2007). Modified hectorites and adsorption studies of a reactive. Applied Clay Science, 37(1-2), 207-214.spa
dc.relation.referencesBoehm, H. P. (2002). Surface oxides on carbon and their analysis: A critical. Carbon, 40(2), 145-149.spa
dc.relation.referencesBrunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-319.spa
dc.relation.referencesChávez-Sifontes, M., & Domine, M. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances en Ciencias e Ingeniería, 4(4), 15-46.spa
dc.relation.referencesCheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116.spa
dc.relation.referencesDai, Y., Zhang, K., Meng, X., Li, J., Guan, X., Sun, Q., Sun, Y., Wang, W., Lin, M., Liu, M., Yang, S., Chen, Y., Gao, F., Zhang, X., & Liu, Z. (2019). New use for spent coffee ground as an adsorbent for tetracycline removal in water. Chemosphere, 215, 163-172.spa
dc.relation.referencesDe La Rosa, A. (2010). Estudio del efecto de un novedoso proceso de desacidificación en el sabor y composición del café (tesis de maestría). Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Santiago de Querétaro, México.spa
dc.relation.referencesEl-Messaoudi, N., El-Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., & Bakiz, B. (2016). Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering, 4(4), 3848-3855.spa
dc.relation.referencesFernández, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2014). Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 62, 437-445.spa
dc.relation.referencesFreundlich, H. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 387-470.spa
dc.relation.referencesGonzález-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, 1393-1414.spa
dc.relation.referencesGonçalves, M., Guerreiro, M., De Oliveira, L., & De Castro, C. (2013). A friendly environmental material: Iron oxide dispersed over activated carbon from coffee husk for organic pollutants removal. Journal of Environmental Management, 127, 206-211.spa
dc.relation.referencesGutiérrez, A. (2002). Café, antioxidantes y protección a la salud. Medisan, 6(4), 72-81.spa
dc.relation.referencesHameed, B. H., & El-Khaiary, M. I. (2008). Equilibrium, kinetics and mechanism of malachite green adsorption activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 157(2-3), 344-351.spa
dc.relation.referencesHeibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99-105.spa
dc.relation.referencesJagtoyen, M., & Derbyshire, F. (1998). Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 36, 1085-1097.spa
dc.relation.referencesJung, K. W., Choi, B. H., Hwang, M. J., Jeong, T. U., & Ahn, K. H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, 219, 185-195.spa
dc.relation.referencesJung, K. W., Choi, B. H., Hwang, M. J., Choi, J. W., Lee, S. H., Chang, J. S., & Ahn, K. H. (2017). Adsorptive removal of anionic azo dye from aqueous solution using activated carbon derived from extracted coffee residues. Journal of Cleaner Production, 166, 360-368.spa
dc.relation.referencesKyzas, G. Z., Lazaridis, N. K., & Mitropoulos, A. C. (2012). Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical Engineering Journal, 189-190, 148-159.spa
dc.relation.referencesKonicki, W., Aleksandrzak, M., & Mijowska, E. (2017). Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 123, 35-49.spa
dc.relation.referencesLafi, R., Fradj, A., Hafiane, A., & Hameed, B. H. (2014). Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean Journal of Chemical Engineering, 31(12), 21982206.spa
dc.relation.referencesLafi, R., & Hafiane, A. (2016). Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). Journal of the Taiwan Institute of Chemical Engineers, 58, 424-433.spa
dc.relation.referencesLangmuir, I. (1916). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403.spa
dc.relation.referencesMa, X., & Ouyang, F. (2013). Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science, 268, 566-570.spa
dc.relation.referencesMurillo, Y., Giraldo, L., & Moreno, J. C. (2011). Determinación de la cinética de adsorción de 2,4-dinitrofenol en carbonizado de hueso bovino por espectrofotometría uv-vis. Revista Colombiana de Química, 40(1), 91-103.spa
dc.relation.referencesÓrfão, J. J. M., Silva, A. I. M., Pereira, J. C. V., Barata, S. A., Fonseca, I. M., Faria, P. C. C., & Pereira, M. F. R. (2006). Adsorption of a reactive dye on chemically modified activated carbons-influence of pH. Journal of Colloid and Interface Science, 296(2), 480-489.spa
dc.relation.referencesPavlović, M. D., Buntić, A. V., Mihajlovski, K. R., Ŝiler-Marinković, S. S., Antonović, D. G., Radovanović, Z., & Dimitrijević-Branković, S. I. (2014). Rapid cationic dye adsorption on polyphenol-extracted coffee grounds: A response surface methodology approach. Journal of the Taiwan Institute of Chemical Engineers, 45, 1691-1699.spa
dc.relation.referencesPeláez, A. (2013). Alternativas de solución para el tratamiento de efluentes textiles (tesis de doctorado). Academia de Ingeniería de México, Ciudad de México, México.spa
dc.relation.referencesPrahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140, 32-42.spa
dc.relation.referencesPuerta, G. I. (2011). Composición química de una taza de café. Ciencia, Tecnología e Innovación para la Caficultura Colombiana, 414(2), 1- 12.spa
dc.relation.referencesRamos, J. (2010). Estudio del proceso de biosorción de colorantes sobre cuncho de café (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesRattanapan, S., Srikram, J., & Kongsune, P. (2017). Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia, 138, 949-954.spa
dc.relation.referencesTehrani, N., Aznar, J., & Kiros, Y. (2015). Coffee extract residue for production of ethanol and activated carbons. Journal of Cleaner Production, 91, 64-70.spa
dc.relation.referencesValencia-Ríos, J. S., & Castellar-Ortega, G. C. (2013). Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Revista Facultad de Ingeniería Universidad de Antioquia, 66, 141-158.spa
dc.relation.referencesWen, X., Liu, H., Zhang, L., Zhang, J., Fu, C., Shi, X., Chen, X., Mijowska, E., Chen, M. J., & Wang, D. Y. (2019). Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource Technology, 272, 92-98.spa
dc.relation.referencesYakout, S., & Sharaf, G. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9, 1155-1162.spa
dc.title.translatedRemoción del colorante azul marino directo sobre borra de café modificadaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal