Mostrar el registro sencillo del ítem

dc.contributor.authorViloria, Amelecspa
dc.contributor.authorHernandez-P, Hugospa
dc.contributor.authorPineda, Omarspa
dc.contributor.authorVargas, Jesússpa
dc.date.accessioned2021-01-28T12:56:37Z
dc.date.available2021-01-28T12:56:37Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7782spa
dc.description.abstractIn the new global and local scenario, the advent of intelligent distribution networks, or Smart Grids, allows the collection of data about the operational state of the electric network in real time. Based on this data availability, the consumption prediction becomes feasible and convenient in the short term, from a few hours to a week (temporary variables). The research proposes that the method used to present the temporary variables for a system to predict electrical consumption affects the results. To verify this hypothesis, different methods for representing these variables are considered, applied to the problem of predicting daily values of electricity consumption in the city of Bogota, Colombia.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceLecture Notes in Electrical Engineeringspa
dc.subjectEnergy consumptionspa
dc.subjectShort term load forecastingspa
dc.subjectVariable selectionspa
dc.subjectLinear regressionspa
dc.titlePrediction of electric consumption using multiple linear regression methodsspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-3125-5_45spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-3125-5_45spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Chamspa
dc.relation.references2. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–625spa
dc.relation.references3. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–185spa
dc.relation.references4. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36:1627–1637 (Preprint)spa
dc.relation.references5. Xue Y, Lai Y (2016) The integration of great energy thinking and big datas thinking: big data and electricity big data. Power Syst Autom 40(1):1–8spa
dc.relation.references6. Wang Y, Chen Q, Kang C et al (2017) Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans Smart Grid 7(5):2437–2447spa
dc.relation.references7. Liu R, Ding W (2011) Statistical analysis and application of SAS. China Machine Press, Chinaspa
dc.relation.references8. Ozger M, Cetinkaya O, Akan OB (2017) Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 23(4):956–966spa
dc.relation.references9. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN: 8420540250spa
dc.relation.references10. Mangasarian O (1997) Arbitrary-norm separating plane. Technical report 97-07, Computer Science Dept., Univ. Wisconsin Madisonspa
dc.relation.references11. Andersson M (2009) A comparison of nine PLS1 algorithms. J Chemometr 23:518–529spa
dc.relation.references12. Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemometr Intell Lab 56:1–11spa
dc.relation.references13. Li H-D, Xu Q-S, Liang Y-Z (2017) A phase diagram for gene selection and disease classification. Chemometr Intell Lab 167:208–213spa
dc.relation.references14. Cao DS, Liang YZ, Xu QS, Li HD, Chen X (2010) A new strategy of outlier detection for QSAR/QSPR. J Comput Chem 31:592–602spa
dc.relation.references15. Tian W (2017) The research into methods of map building and path planning on mobile robots. In: IEEE 2nd information technology, networking, electronic and automation control conference (ITNEC 2017), pp 1087–1090spa
dc.relation.references16. Dugas M et al (2014) Missing semantic annotation in databases. Methods Inf Med 53(6):516–517spa
dc.relation.references17. Silberschatz A, Korth HF, Sudarshan S et al (1997) Database system concepts, vol 4. McGraw-Hill, New Yorkspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International