Mostrar el registro sencillo del ítem

dc.contributor.authorClemente-Suárez, Vicente Javierspa
dc.contributor.authorHormeño-Holgado, Albertospa
dc.contributor.authorJiménez, Manuelspa
dc.contributor.authorBenitez Agudelo, Juan Camilospa
dc.contributor.authorNavarro Jiménez, Eduardospa
dc.contributor.authorPérez Palencia, Nataliaspa
dc.contributor.authorMaestre-Serrano, Ronaldspa
dc.contributor.authorLaborde Cardenas, Carmen Ceciliaspa
dc.contributor.authorTornero-Aguilera, Jose Franciscospa
dc.date.accessioned2021-01-28T22:20:05Z
dc.date.available2021-01-28T22:20:05Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7796spa
dc.description.abstractThe novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceVaccines (Basel)spa
dc.subjectSARS-Cov-2spa
dc.subjectCOVID-19spa
dc.subjectherd immunologyspa
dc.subjectvaccinesspa
dc.subjectpandemicspa
dc.subjectepidemiologyspa
dc.titleDynamics of population immunity due to the herd effect in the COVID-19 pandemicspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349986/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doi10.3390/vaccines8020236spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Topley W.W.C., Wilson G.S. The spread of bacterial infection. The problem of herd-immunity. Epidemiol. Infect. 1923;21:243–249. doi: 10.1017/S0022172400031478spa
dc.relation.references2. Fine P.E. Herd immunity: History, theory, practice. Epidemiol. Rev. 1993;15:265–302. doi: 10.1093/oxfordjournals.epirev.a036121.spa
dc.relation.references3. Fine P., Eames K., Heymann D.L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 2011;52:911–916. doi: 10.1093/cid/cir007.spa
dc.relation.references4. Rashid H., Khandaker G., Booy R. Vaccination and herd immunity: What more do we know? Curr. Opin. Infect Dis. 2012;25:243–249. doi: 10.1097/QCO.0b013e328352f727.spa
dc.relation.references5. Smith D.R. Herd Immunity. Vet. Clin. Pract. 2019;35:593–604. doi: 10.1016/j.cvfa.2019.07.001spa
dc.relation.references6. Goncalves G. Herd immunity: Recent uses in vaccine assessment. Expert Rev. Vaccines. 2008;7:1493–1506. doi: 10.1586/14760584.7.10.1493spa
dc.relation.references7. Korppi M. Universal pneumococcal vaccination provides marked indirect beneficial effects through herd immunity. Acta Paediatr. 2018;107:1488–1489. doi: 10.1111/apa.14379.spa
dc.relation.references8. Nymark L.S., Sharma T., Miller A., Enemark U., Griffiths U.K. Inclusion of the value of herd immunity in economic evaluations of vaccines. A systematic review of methods used. Vaccine. 2017;35:6828–6841. doi: 10.1016/j.vaccine.2017.10.024.spa
dc.relation.references9. Ali M., Emch M., Von Seidlein L., Yunus M., Sack D.A., Rao M., Holmgren J., Clemens J.D. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: A reanalysis. Lancet. 2005;366:44–49. doi: 10.1016/S0140-6736(05)66550-6.spa
dc.relation.references10. Kinoshita R., Nishiura H. Assessing herd immunity against rubella in Japan: A retrospective seroepidemiological analysis of age-dependent transmission dynamics. BMJ Open. 2016:6. doi: 10.1136/bmjopen-2015-009928.spa
dc.relation.references11. Smith D., Huynh C., Moore A.J., Frick A., Anderson C., Porrachia M., Scott B., Stous S., Schooley R., Little S., et al. Herd Immunity Likely Protected the Men Who Have Sex With Men in the Recent Hepatitis A Outbreak in San Diego, California. Clin. Infect. Dis. 2019;68:1228–1230. doi: 10.1093/cid/ciy592spa
dc.relation.references12. Maver P.J., Poljak M. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review. Vaccine. 2018;36:5416–5423. doi: 10.1016/j.vaccine.2017.07.113spa
dc.relation.references13. LeBlanc J.J., ElSherif M., Ye L., MacKinnon-Cameron D., Ambrose A., Hatchette T.F., Lang A.L.S., Gillis H.D., Martin I., Demczuk W., et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: A study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN) Vaccine. 2019;37:5466–5473. doi: 10.1016/j.vaccine.2019.05.003.spa
dc.relation.references14. Payne P., Geyrhofer L., Barton N.H., Bollback J.P. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 2018;7:e32035. doi: 10.7554/eLife.32035.spa
dc.relation.references15. Albuquerque I.G.C.D., Marandino R., Mendonça A.P., Nogueira R.M.R., Vasconcelos P.F.D.C., Guerra L.R., Brandão B.C., Mendonça A.P., Aguiar G.R., Bacco P.A. Chikungunya virus infection: Report of the first case diagnosed in Rio de Janeiro, Brazil. Rev. Soc. Bras. Med. Trop. 2012;45:128–129. doi: 10.1590/S0037-86822012000100026.spa
dc.relation.references16. Kwok K.O., Lai F., Wei W.I., Wong S.Y.S., Tang J.W. Herd immunity–estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 2020;80:e32–e33. doi: 10.1016/j.jinf.2020.03.027.spa
dc.relation.references17. Fox J.P., Elveback L., Scott W., Gatewood L., Ackerman E. Herd immunity: Basic concept and relevance to public health immunization practices. Am. J. Epidemiol. 1971;94:179–189. doi: 10.1093/oxfordjournals.aje.a121310.spa
dc.relation.references18. Singhal T. A review of coronavirus disease-2019 (COVID-19) Indian J. Pediatr. 2020;87 doi: 10.1007/s12098-020-03263-6.spa
dc.relation.references19. Peng X., Xu X., Li Y., Cheng L., Zhou X., Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020;12:9. doi: 10.1038/s41368-020-0075-9.spa
dc.relation.references20. Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0.spa
dc.relation.references21. Qiao J. What are the risks of COVID-19 infection in pregnant women? Lancet. 2020;395:760–762. doi: 10.1016/S0140-6736(20)30365-2.spa
dc.relation.references22. Zhou G., Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 2020;16:1718. doi: 10.7150/ijbs.45123.spa
dc.relation.references23. Xun J., Lu L., Jiang S., Lu H., Wen Y., Huang J. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered 2 patient cohort and their implications. Medrxiv. 2020 doi: 10.1101/2020.03.30.20047365.spa
dc.relation.references24. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;5:434–435. doi: 10.1016/S2468-1253(20)30083-2.spa
dc.relation.references25. Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., de Salazar P.M., Cowling B.J., Lipsitch M., Leung G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020;26:506–510. doi: 10.1038/s41591-020-0822-7.spa
dc.relation.references26. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.spa
dc.relation.references27. Mizumoto K., Kagaya K., Zarebski A., Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25:2000180. doi: 10.2807/1560-7917.ES.2020.25.10.2000180.spa
dc.relation.references28. Benvenuto D., Giovanetti M., Vassallo L., Angeletti S., Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020;29:105340. doi: 10.1016/j.dib.2020.105340.spa
dc.relation.references29. Read J.M., Bridgen J.R., Cummings D.A., Ho A., Jewell C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. Medrxiv. 2020 doi: 10.1101/2020.01.23.20018549.spa
dc.relation.references30. Wang H., Wang Z., Dong Y., Chang R., Xu C., Yu X., Zhang S., Tsamlag L., Shang M., Huang J., et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020;6:10. doi: 10.1038/s41421-020-0148-0spa
dc.relation.references31. Tang B., Bragazzi N.L., Li Q., Tang S., Xiao Y., Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) Infect. Dis. Model. 2020;5:248–255. doi: 10.1016/j.idm.2020.02.001.spa
dc.relation.references32. Chen T.M., Rui J., Wang Q.P., Zhao Z.Y., Cui J.A., Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty. 2020;9:24. doi: 10.1186/s40249-020-00640-3spa
dc.relation.references33. Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020;27:taaa021. doi: 10.1093/jtm/taaa021.spa
dc.relation.references34. Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19. Cell Press. 2020 doi: 10.1016/j.immuni.2020.04.012.spa
dc.relation.references35. Shim E., Tariq A., Choi W., Lee Y., Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020;93:339–344. doi: 10.1016/j.ijid.2020.03.031.spa
dc.relation.references36. Adhikari S.P., Meng S., Wu Y.J., Mao Y.P., Ye R.X., Wang Q.Z., Sun C., Sylvia S., Rozelle S., Raat H., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty. 2020;9:29. doi: 10.1186/s40249-020-00646-x.spa
dc.relation.references37. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines. 2020;5:18. doi: 10.1038/s41541-020-0170-0.spa
dc.relation.references38. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly. 2020;2:113–122.spa
dc.relation.references39. WHO Characterizes COVID-19 as a Pandemic. [(accessed on 15 May 2020)];2020 Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=15756&Itemid=39630&lang=en.spa
dc.relation.references40. Foddai A., Lindberg A., Lubroth J., Ellis-Iversen J. Surveillance to improve evidence for community control decisions during the COVID-19 pandemic–opening the animal epidemic toolbox for public health. One Health. 2020;9:100130. doi: 10.1016/j.onehlt.2020.100130.spa
dc.relation.references41. de Lusignan S., Bernal J.L., Zambon M., Akinyemi O., Amirthalingam G., Andrews N., Borrow R., Byford R., Charlett A., Dabrera G., et al. Emergence of a novel coronavirus (COVID-19): Protocol for extending surveillance used by the Royal College of general practitioners research and surveillance centre and public health England. JMIR Public Health Surveill. 2020;6:e18606. doi: 10.2196/18606.spa
dc.relation.references42. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648.spa
dc.relation.references43. Tufan Z.K., Kayaaslan B. Crushing the curve, the role of national and international institutions and policy makers in COVID-19 pandemic. Turk. J. Med. Sci. 2020;50:495–508. doi: 10.3906/sag-2004-167spa
dc.relation.references44. Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020:200432. doi: 10.1148/radiol.2020200432.spa
dc.relation.references45. Li W., Yang Y., Liu Z.H., Zhao Y.J., Zhang Q., Zhang L., Cheung T., Xiang Y.-T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020;16:1732–1738. doi: 10.7150/ijbs.45120spa
dc.relation.references46. World Health Organization . Operational Considerations for COVID-19 Surveillance Using GISRS: Interim Guidance, 26 March 2020 (No. WHO/2019-nCoV/Leveraging_GISRS/2020.1) World Health Organization; Geneva, Switzerland: 2020spa
dc.relation.references47. Srivastava N., Baxi P., Ratho R.K., Saxena S.K. Coronavirus Disease 2019 (COVID-19) Springer; Singapore: 2020. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19)spa
dc.relation.references48. Peng F., Tu L., Yang Y., Hu P., Wang R., Hu Q., Cao F., Jiang T., Sun J., Xu G., et al. Management and Treatment of COVID-19: The Chinese Experience. Can. J. Cardiol. 2020 doi: 10.1016/j.cjca.2020.04.010.spa
dc.relation.references49. Li L., Qin L., Xu Z., Yin Y., Wang X., Kong B., Bai J., Lu Y., Fang Z., Song Q., et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology. 2020:200905. doi: 10.1148/radiol.2020200905spa
dc.relation.references50. Biswas M.H.A., Paiva L.T., De Pinho M.D.R. A SEIR model for control of infectious diseases with constraints. Math. Biosci. Eng. 2014;11:761–784. doi: 10.3934/mbe.2014.11.761.spa
dc.relation.references51. Herrmann H.A., Schwartz J.M. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example. medRxiv. 2020 doi: 10.1101/2020.04.02.20050468.spa
dc.relation.references52. Fresnadillo-Martínez M.J., Garcia-Sanchez E., Garcia-Merino E., García-Sánchez J.E. Mathematical modelling of the propagation of infectious diseases: Where we came from, and where we are going. Rev. Esp. Quim. 2013;26:81–91.spa
dc.relation.references53. Sambala E.Z., Manderson L. Policy perspectives on post pandemic influenza vaccination in Ghana and Malawi. BMC Public Health. 2017;17:227. doi: 10.1186/s12889-017-4058-5spa
dc.relation.references54. Garnett G.P. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J. Infect. Dis. 2005;191:S97–S106. doi: 10.1086/425271.spa
dc.relation.references55. Zhan C., Chi K.T., Lai Z., Chen X., Mo M. General Model for COVID-19 Spreading with Consideration of Intercity Migration, Insufficient Testing and Active Intervention: Application to Study of Pandemic Progression in Japan and USA. medRxiv. 2020 doi: 10.1101/2020.03.25.20043380.spa
dc.relation.references56. Flaxman S., Mishra S., Gandy A., Unwin H., Coupland H., Mellan T., Zhu H., Berah T., Eaton J., Perez Guzman P., et al. Report 13: Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries. Imperial College London; London, UK: 2020.spa
dc.relation.references57. Karin O., Bar-On Y.M., Milo T., Katzir I., Mayo A., Korem Y., Dudovich B., Yashiv E., Zehavi A.J., Davidovich N., et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic activity. medRxiv. 2020 doi: 10.1101/2020.04.04.20053579.spa
dc.relation.references58. Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020;130:1545–1548. doi: 10.1172/JCI138003spa
dc.relation.references59. Walker P.G., Whittaker C., Watson O., Baguelin M., Ainslie K.E.C., Bhatia S., Boonyasiri A., Boyd O., Cattarino L. The Global Impact of covid-19 and Strategies for Mitigation and Suppression. Imperial College of London; London, UK: 2020.spa
dc.relation.references60. The Coalition for Epidemic Preparedness Innovations CEPI welcomes UK Government’s funding and highlights need for $2 billion to develop a vaccine against COVID-19.spa
dc.relation.references61. James A., Hendy S.C., Plank M.J., Steyn N. Suppression and Mitigation Strategies for Control of COVID-19 in New Zealand. medRxiv. 2020 doi: 10.1101/2020.03.26.20044677.spa
dc.relation.references62. Anderson R.M., Heesterbeek H., Klinkenberg D., Hollingsworth T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395:931–934. doi: 10.1016/S0140-6736(20)30567-5.spa
dc.relation.references63. Colson P., Rolain J.M., Lagier J.C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents. 2020;55:105932. doi: 10.1016/j.ijantimicag.2020.105932.spa
dc.relation.references64. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin. Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393.spa
dc.relation.references65. Cortegiani A., Ingoglia G., Ippolito M., Giarratano A., Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care. 2020;57:279–283. doi: 10.1016/j.jcrc.2020.03.005.spa
dc.relation.references66. COVID-19 Reinfection Becoming an Issue in China, Strategist Says.spa
dc.relation.references67. Sanche S., Lin Y.T., Xu C., Romero-Severson E., Hengartner N., Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020 doi: 10.3201/eid2607.200282.spa
dc.relation.references68. Armocida B., Formenti B., Ussai S., Palestra F., Missoni E. The Italian health system and the COVID-19 challenge. Lancet Public Health. 2020 doi: 10.1016/S2468-2667(20)30074-8.spa
dc.relation.references69. Worst-Case Estimates for U.S. Coronavirus Deaths.spa
dc.relation.references70. Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P.G.T., Fu H., et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect Dis. 2020 doi: 10.1016/S1473-3099(20)30243-7spa
dc.relation.references71. Kissler S.M., Tedijanto C., Goldstein E., Grad Y.H., Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 though the postpandemic period. Science. 2020 doi: 10.1126/science.abb5793.spa
dc.relation.references72. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8.spa
dc.relation.references73. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433.spa
dc.relation.references74. Nasiri M.J., Haddadi S., Tahvildari A., Farsi Y., Arbabi M., Hasanzadeh S., Jamshidi P., Murthi M., Mirsaeidi M. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. medRxiv. 2020 doi: 10.1101/2020.03.24.20042903.spa
dc.relation.references75. Bao L., Deng W., Gao H., Xiao C., Liu J., Xue J., Lv Q., Liu J., Yu P., Xu Y., et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv. 2020 doi: 10.1101/2020.03.13.990226.spa
dc.relation.references76. Andre F.E., Booy R., Bock H.L. Bulletin of the World Health Organization Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008;86:140–146. doi: 10.2471/BLT.07.040089.spa
dc.relation.references77. John T.J., Samuel R. Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 2000;16:601–606. doi: 10.1023/A:1007626510002.spa
dc.relation.references78. Anderson R.M., May R.M. Vaccination and herd immunity to infectious diseases. Nature. 1985;318:323–329. doi: 10.1038/318323a0.spa
dc.relation.references79. Adegbola R., Secka O., Lahai G., Lloyd-Evans N., Njie A., Usen S., Oluwalana C., Obaro S., Weber M., Corrah T., et al. Elimination of Haemophilus influenzae type b (Hib) disease from the Gambia after introduction of a Hib conjugate vaccine: A prospective study. Lancet. 2005;366:144–150. doi: 10.1016/S0140-6736(05)66788-8.spa
dc.relation.references80. Moulton L.H., Chung S., Croll J., Reid R., Weatherholtz R.C., Santosham M. Estimation of the indirect effect of Haemophilus influenzae type b conjugate vaccine in an American Indian population. Int. J. Epidemiol. 2000;29:753–756. doi: 10.1093/ije/29.4.753.spa
dc.relation.references81. Schlenker T.L., Bain C., Baughman A.L., Hadler S.C. Measles herd immunity: The association of attack rates with immunization rates in preschool children. JAMA. 1992;267:823–826. doi: 10.1001/jama.1992.03480060069032.spa
dc.relation.references82. Hochberg M.E. Importance of suppression and mitigation measures in managing COVID-19 outbreaks. medRxiv. 2020 doi: 10.1101/2020.03.31.20048835.spa
dc.relation.references83. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020:105949. doi: 10.1016/j.ijantimicag.2020.105949.spa
dc.relation.references84. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020;20:400–402. doi: 10.1016/S1473-3099(20)30132-8.spa
dc.relation.references85. Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov. Ther. 2020;14:58–60. doi: 10.5582/ddt.2020.01012.spa
dc.relation.references86. Katul G.G., Mrad A., Bonetti S., Manoli G., Parolari A.J. Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. medRxiv. 2020 doi: 10.1101/2020.04.10.20060954spa
dc.relation.references87. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020;109:1082–1083. doi: 10.1111/apa.15271.spa
dc.relation.references88. Pang J., Wang M.X., Ang I.Y., Tan S.H., Lewis R.F., Chen J.I., Gutierrez R.A., Gwee S.X., Chua P.E., Yang Q., et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. J. Clin. Med. 2020;9:623. doi: 10.3390/jcm9030623.spa
dc.relation.references89. Graham R.L., Donaldson E.F., Baric R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013;11:836–848. doi: 10.1038/nrmicro3143.spa
dc.relation.references90. Zhang J., Zeng H., Gu J., Li H., Zheng L., Zou Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines. 2020;8:153. doi: 10.3390/vaccines8020153.spa
dc.relation.references91. Benjamin-Chung J., Abedin J., Berger D., Clark A., Jimenez V., Konagaya E., Tran D., Arnold B.F., Hubbard A.E., Luby S.P., et al. Spillover effects on health outcomes in low-and middle-income countries: A systematic review. Int. J. Epidemol. 2017;46:1251–1276. doi: 10.1093/ije/dyx039.spa
dc.relation.references92. Ali M., Qadri F., Kim D.R., Islam T., Im J., Ahmmed F., Chon Y., Islam Khan A., Zaman K., Marks F., et al. Unmasking herd protection by an oral cholera vaccine in a cluster-randomized trial. Int. J. Epidemol. 2019;48:1252–1261. doi: 10.1093/ije/dyz060.spa
dc.relation.references93. Callaway E. Should scientists infect healthy people with the coronavirus to test vaccines? Nature. 2020;580:17. doi: 10.1038/d41586-020-00927-3.spa
dc.relation.references94. Plotkin S.A., Plotkin S.A. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008;47:401–409. doi: 10.1086/589862.spa
dc.relation.references95. Callaway E. The race for coronavirus vaccines: A graphical guide. Nature. 2020;580:576. doi: 10.1038/d41586-020-01221-y.spa
dc.relation.references96. Lang P.O., Aspinall R. Immunosenescence and herd immunity: With an ever-increasing aging population do we need to rethink vaccine schedules? Expert Rev. Vaccines. 2012;11:167–176. doi: 10.1586/erv.11.187.spa
dc.relation.references97. Nicola D., Vito M., Linda J.S., Canio B. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020;131:21–23spa
dc.relation.references98. Del Giudice G., Goronzy J.J., Grubeck-Loebenstein B., Lambert P.H., Mrkvan T., Stoddard J.J., Doherty T.M. Fighting against a protean enemy: Immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 2017;4:1. doi: 10.1038/s41514-017-0020-0spa
dc.relation.references99. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W., Duan G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12:372. doi: 10.3390/v12040372.spa
dc.relation.references100. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020;26:103670. doi: 10.1016/j.compbiomed.2020.103670.spa
dc.relation.references101. Ahmed S.F., Quadeer A.A., McKay M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12:254. doi: 10.3390/v12030254.spa
dc.relation.references102. Colgrove J. Vaccine refusal revisited the limits of public health persuasion and coercion. N. Eng. J. Med. 2016;375:1316–1317. doi: 10.1056/NEJMp1608967.spa
dc.relation.references103. Dudley M.Z., Halsey N.A., Omer S.B., Orenstein W.A., TO’Leary S., Limaye R.J., Salmon D.A. The state of vaccine safety science: Systematic reviews of the evidence. Lancet Infect. Dis. 2020;20:e80–e89. doi: 10.1016/S1473-3099(20)30130-4.spa
dc.relation.references104. Metcalf C.J., Ferrari M., Graham A.L., Grenfell B.T. Understanding herd immunity. Trends Immunol. 2015;36:753–755. doi: 10.1016/j.it.2015.10.004.spa
dc.relation.references105. Betsch C., Böhm R., Korn L., Holtmann C. On the benefits of explaining herd immunity in vaccine advocacy. Nature Hum. Behav. 2017;1:0056. doi: 10.1038/s41562-017-0056.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International