Show simple item record

dc.creatorElanchezhian, E.
dc.creatorNirmalkumar, R.
dc.creatorBalamurugan, M.
dc.creatorMohana, K.
dc.creatorPrabu, K. M
dc.creatorViloria, Amelec
dc.date.accessioned2021-01-29T14:16:56Z
dc.date.available2021-01-29T14:16:56Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7797
dc.description.abstractThis paper focuses on the research of motile microorganism rates in the bioconvective Oldroyd-B nanoliquid flow over a vertical stretching sheet with mixed convection and inclined magnetic field. Additionally, interesting characteristics of thermophoresis, Brownian motion, viscous dissipation, Joule heating, and stratification are examined. Similarity transformations are employed to reduce the mathematical model to higher-order ODE. The convergent serious solution is applied to solve the nonlinear differential system. The analysis of temperature, velocity, motile microorganisms’ density, and nanoparticle concentration are represented through graphs. Local Nusselt number, density number of motile microorganisms, and Sherwood number are examined via contour plots.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Thermal Analysis and Calorimetry volumespa
dc.subjectBioconvectionspa
dc.subjectGyrotactic microorganismsspa
dc.subjectOldroyd-B nanofluidspa
dc.subjectStratificationspa
dc.subjectinclined magnetic fieldspa
dc.titleHeat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticlesspa
dc.typearticlespa
dcterms.references1. Reddy GJ, Kumar M, Anwar Beg O. Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Phys A. 2018;510:426–45.spa
dcterms.references2. Dash GC, Ojha KL. Viscoelastic hydromagnetic flow between two porous parallel plates in the presence of sinusoidal pressure gradient. Alex Eng J. 2018;57:3463–71spa
dcterms.references3. Hayat T, Kiyani MZ, Ahmad I, Khan MI, Alsaedi A. Stagnation point flow of viscoelastic nanomaterial over a stretched surface. Results Phys. 2018;9:518–26.spa
dcterms.references4. Bhatnagar RK, Gupta G, Rajagopal KR. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech. 1995;30:391–405.spa
dcterms.references5. Sajid M, Abbas Z, Javed T, Ali N. Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can J Phys. 2010;88:635–40.spa
dcterms.references6. Shehzad SA, Alsaedi A, Hayat T, Alhuthali MS. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PloS One. 2013;8:e78240.spa
dcterms.references7. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM. Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow. 2014;24:390–401.spa
dcterms.references8. Xu H, Cui J. Mixed convection flow in a channel with slip in a porous medium saturated with a nanofluid containing both nanoparticles and microorganisms. Int J Heat Mass Transf. 2018;125:1043–53.spa
dcterms.references9. Hayat T, Aziz A, Muhammad T, Alsaedi A. An optimal analysis for Darcy–Forchheimer 3D flow of nanofluid with convective condition and homogeneous–heterogeneous reactions. Phys Lett A. 2018;382:2846–55.spa
dcterms.references10. Hayat T, Aziz A, Muhammad T, Alsaedi A. An optimal analysis for Darcy–Forchheimer 3D flow of Carreau nanofluid with convectively heated surface. Results Phys. 2018;9:598–608.spa
dcterms.references11. Khan M, Irfan M, Khan WA. Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid. Int J Mech Sci. 2017;130:375–82.spa
dcterms.references12. Alsaedi A, Khan MI, Farooq M, Gull N, Hayat T. Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. Adv Powder Technol. 2017;28:288–98.spa
dcterms.references13. Abdelmalek Z, Khan SU, Waqas H, et al. A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip. J Therm Anal Calorim. 2020.spa
dcterms.references14. Tham L, Nazar R, Pop I. Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. Int J Heat Mass Transf. 2013;62:647–60.spa
dcterms.references15. Aziz A, Khan WA, Pop I. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int J Therm Sci. 2012;56:48–57.spa
dcterms.references16. Xu H, Pop I. Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. Eur J Mech B Fluids. 2014;46:37–45.spa
dcterms.references17. Abdelmalek Z, Khan SU, Awais M, et al. Analysis of generalized micropolar nanofluid with swimming of microorganisms over an accelerated surface with activation energy. J Therm Anal Calorim. 2020.spa
dcterms.references18. Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37:1421–5.spa
dcterms.references19. Kuznetsov AV. Nanofluid biothermal convection: simultaneous effects of gyrotactic and oxytactic micro-organisms. Fluid Dyn Res. 2011;43:055505.spa
dcterms.references20. Muhammad T, Alamri SZ, Waqas H, et al. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J Therm Anal Calorim. 2020.spa
dcterms.references21. Khan WA, Uddin MJ, Ismail AIM. Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transp Porous Med. 2013;97:241–52.spa
dcterms.references22. Tausif MS, Das K, Kundu PK. Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. J Mol Liq. 2016;220:518–26spa
dcterms.references23. Bhatti MM, Michaelides EE. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Therm Anal Calorim. 2020.spa
dcterms.references24. Siddiqa S, Sulaiman M, Hossain MA, Islam S, Gorla RSR. Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface. Int J Therm Sci. 2016;108:244–50.spa
dcterms.references25. Mutuku WN, Makinde OD. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluid. 2014;95:88–97.spa
dcterms.references26. Makinde OD, Animasaun IL. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int J Therm Sci. 2016;109:159–71.spa
dcterms.references27. Raees A, Raees-ul-Haq M, Xu H, Sun Q. Three-dimensional stagnation flow of a nanofluid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Appl Math Model. 2016;40:4136–50.spa
dcterms.references28. Akbar NS, Khan ZH. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. J Magn Magn Mater. 2016;410:72–80.spa
dcterms.references29. Wang N, Maleki A, Alhuyi Nazari M, Tlili I, Safdari Shadloo M. Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry. 2020;12:206.spa
dcterms.references30. Ahmadi MH, Ahmadi MA, Maleki A, Pourfayaz F, Bidi M, Açıkkalp E. Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas. Renew Sustain Energy Rev. 2017;78:80–92.spa
dcterms.references31. Hayat T, Qayyum S, Khan MI, Alsaedi A. Current progresses about probable error and statistical declaration for radiative two-phase flow using AgH2O and CuH2O nanomaterials. Int J Hydrog Energy. 2017.spa
dcterms.references32. Ramezanizadeh M, Nazari MA, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019.spa
dcterms.references33. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput Methods Appl Mech Eng. 2016.spa
dcterms.references34. Maleki A, Elahi M, Assad ME, Nazari MA, Shadloo MS, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020.spa
dcterms.references35. Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12:120.spa
dcterms.references36. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Nazari MA. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2018.spa
dcterms.references37. Khan SU, Rauf A, Shehzad SA, Abbas Z, Javed T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys A. 2019;527:121179.spa
dcterms.references38. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019.spa
dcterms.references39. Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math. 2007;119(4):297–354.spa
dcterms.references41. Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2019.spa
dcterms.references42. Loganathan K, Mohana K, Mohanraj M, Sakthivel P, Rajan S. Impact of 3rd-grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: an approach to entropy optimization. J Therm Anal Calorim. 2020.spa
dcterms.references43. Loganathan K, Sivasankaran S, Bhuvaneshwari M, Rajan S. Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo–Christov heat flux with convective heating. J Therm Anal Calorim. 2019;136:401–9.spa
dcterms.references44. Sadeghy K, Hajibeygi H, Taghavi SM. Stagnation-point flow of upper-convected Maxwell fluids. Int J Non-Linear Mech. 2006;41:1242.spa
dcterms.references45. Mukhopadhyay S. Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett. 2012;29:054703.spa
dcterms.references46. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T. Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B. 2016;25:014701.spa
dcterms.references47. Fang T, Zhang J, Yao S. Slip MHD viscous flow over a stretching sheet an exact solution. Commun Nonlinear Sci Numer Simul. 2009;14:3731–7.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://link.springer.com/article/10.1007/s10973-020-09847-wspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/s10973-020-09847-w


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International