Mostrar el registro sencillo del ítem

dc.contributor.authorSilva, Jesusspa
dc.contributor.authorEscobar Gomez, John Freddyspa
dc.contributor.authorSteffens Sanabria, Ernestospa
dc.contributor.authorhernandez Palma, Hugospa
dc.contributor.authorIkeda Tsukazan, Lucía Midorispa
dc.contributor.authorLinares Weilg, Jorge Luisspa
dc.contributor.authorMercado, Nohoraspa
dc.date.accessioned2021-01-29T19:04:02Z
dc.date.available2021-01-29T19:04:02Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11323/7800spa
dc.description.abstractThe process of project evaluation is of vital importance for decision-making in organizations. In the particular case of IT projects, the historical average of successful projects is 30.7%, while renegotiated projects are 47.3% and cancelled projects are 22% [1]. These figures mean that huge budgets are affected every year by errors in planning or control and monitoring of projects, with an economic and social impact. The objective of this research is to evaluate the MCGEP evolutionary algorithm in different versions databases with information on the evaluation of IT projects. The aim is to determine the possibility of applying an evolutionary algorithm that uses programming of genetic expressions as opposed to others of greater use.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceProcedia Computer Sciencespa
dc.subjectGenetic Algorithmsspa
dc.subjectGene Expression Programmingspa
dc.subjectMCGEP Algorithmspa
dc.subjectProject Evaluationspa
dc.subjectRules learningspa
dc.titleModel genetic rules based systems for evaluation of projectsspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1877050920305068#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.procs.2020.03.069spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1 L. Thames, D. Schaefer Softwaredefined Cloud Manufacturing for Industry 4.0 Procedía CIRP, 52 (2016), pp. 12-17spa
dc.relation.references2 Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.spa
dc.relation.references3 Schweidel D.A., Knox G. Incorporating direct marketing activity into latent attrition models Marke¬ting Science, 31 (3) (2013), pp. 471-487spa
dc.relation.references4 Setnes M., Kaymak U. Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing Fuzzy Systems, IEEE Transactions on, 9 (1) (2001), pp. 153-163spa
dc.relation.references5 Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206spa
dc.relation.references6 Sosinsky B. Cloud Computing Bible, Wiley Publishing Inc., Indiana (2011), p. 3spa
dc.relation.references7 Bravo M., Alvarado M. Similarity measures for substituting Web services International Journal of Web Services Research, 7 (3) (2010), pp. 1-29spa
dc.relation.references8 Chen L., Zhang Y., Song Z.L., Miao Z. Automatic web services classification based on rough set theory Journal of Central South University, 20 (2013), pp. 2708-2714spa
dc.relation.references9 Pineda Lezama O., Gómez Dorta R. Techniques of multivariate statistical analysis: An application for the Honduran banking sector Innovare: Journal of Science and Technology, 5 (2) (2017), pp. 61-75spa
dc.relation.references10 Viloria A., Lis-Gutiérrez J.P., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)spa
dc.relation.references11 Nisa, R., Qamar, U.: A text mining-based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).spa
dc.relation.references12 Wu J., Chen L., Zheng Z., Lyu M.R., Wu Z. Clustering web services to facilitate service discovery Knowledge and information systems, 38 (1) (2014), pp. 207-229spa
dc.relation.references13 Alderson J. A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future Journal of Science and Medicine in Sport, 19 (2015), p. e79 doi: 10.1016/j.jsams.2015.12.192.spa
dc.relation.references14 Project Management Institute A Guide to the Project Management Body of Knowledge (6th Edition), Project Management Institute, Pennsylvania (2017)spa
dc.relation.references15 Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, Anand Ghalsas Cloud computing — The business perspective Decision support systems, Elsevier (2011), pp. 176-189 2010, Volume 51, Issue 1Aprilspa
dc.relation.references16 Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Retrieved from https://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAMOA.spa
dc.relation.references17 Mell Grance The NIST definition of cloud computing., NIST Special Publication (2011), pp. 800-845spa
dc.relation.references18 Sitto K., M. Presser Field Guide to Hadoop, O’REILLY, California (2015), pp. 31-33spa
dc.relation.references19 Alcalá R., Alcalá-Fdez J., Herrera F. A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection IEEE Transactions on Fuzzy Systems, 15 (4) (2007), pp. 616-635spa
dc.relation.references20 Elsaid A., Salem R., Abdul-Kader H. A Dynamic Stakeholder Classification and Prioritization Based on Hybrid Rough-fuzzy Method Journal of Software Engineering, 11 (2017), pp. 143-159spa
dc.relation.references21 Tan K.C., Yu Q., Ang J.H. A coevolutionary algorithm for rules discovery in data mining [Publicación periódica] // International Journal of Systems Science -, 37 (2006), p. 12spa
dc.relation.references22 Bojarczuk C.C., Lopes H.S., Freitas A.A., Michalkiewicz E.L. A constrained-syntax genetic programming system for discovering classification rules: Application to medical data sets Artificial Intelligence in Medicine, 30 (1) (2004), pp. 27-48 ISSN 0933-3657.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International