Show simple item record

dc.contributor.authorViloria, Amelec
dc.contributor.authorMendinueta, Martha
dc.contributor.authorBorrero, Luz Adriana
dc.contributor.authorPineda, Omar
dc.description.abstractPrediction models are used for knowing the behavior of highly related complex data. The prediction of morphological structures, and especially the mandible from cranio-maxillary variables, has clinical and investigative odontological usefulness. For example, in cases of trauma, pathologies and in forensic sciences, especially when it is necessary to¬ individualize a missing person, using facial reconstruction. The aim of this paper is to predict mandibular morphology through artificial neuronal networks, using cranio-maxillary measures in posterior-anterior
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.sourceProcedia Computer Sciencespa
dc.subjectArtificial Neural Networksspa
dc.subjectMandibular Bonespa
dc.titlePrediction of mandibular morphology through artificial neural networksspa
dc.typeArtículo de revistaspa
dcterms.references1 Infante Contreras C, López LA. Uso de técnicas mul¬tivariadas para la clasificación de estructuras óseas craneanas: una aplicación en medicina forense. Bogotá, Colombia: Universidad Nacional de Colombia;
dcterms.references2 Guevara S, Infante-Contreras C, González FA. Uso de redes neuronales en la predicción de la morfología mandibular: aplicación forense. Bogotá, Colombia: Universidad Nacional de Colombia;
dcterms.references3 Sanggarnjanavanich S, Sekiya T, Nomura Y, Nakayama T, Hanada N, Nakamura Y Cranial-base morphology in adults with skeletal Class III malocclusion Am J Orthod Dentofacial Orthoped., 146 (1) (2014), pp. 82-91 Julspa
dcterms.references4 Lu CH, Ko EW, Liu L Improving the video imaging pre¬diction of postsurgical facial profiles with an artificial neural network J Dent Sci., 4 (3) (2009), pp. 118-129 Sepspa
dcterms.references5 Hou T, Wang J, Li Y ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine Journal of Chemical Information and Modeling, 47 (6) (2007), pp. 2408-2415 Novspa
dcterms.references6 International Multimedia Resource Center, «RAM vs. Hard Drive Memory, » 2018. [En línea). Available: tutorial/ramvsdiskspacehtm.htm. [Último acceso: 13 noviembre 2018).spa
dcterms.references7 Kanehisa Laboratories, «KEGG: Kyoto Encyclopedia of Genes and Genome,» 2018. [En línea). Available: [Último acceso: 25 07 2018).spa
dcterms.references8 United States Environmental Protection Agency, Appendix F. SMILES Notation Tutorial, Washington D.C.,
dcterms.references9 United States Environmental Protection Agency, «SMILES Tutorial,» 21 febrero 2016. [En línea). Available: [Último acceso: 26 Julio 2018).spa
dcterms.references10 Daylight Chemical Information Systems, «4. SMARTS - A Language for Describing Molecular Patterns, » 2008. [En línea). Available: [Último acceso: 26 Julio 2018).spa
dcterms.references11 Lantz B. Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. Birmingham: Packt Publ;
dcterms.references12 Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM Applying machine learning techniques for ADME-Tox prediction: a review Expert Opinion on Drug Metabolism & Toxicology., 11 (2) (2015), pp. 259-271 Feb;spa
dcterms.references13 Shen J, Cheng F, Xu Y, Li W, Tang Y Estimation of ADME Properties with Substructure Pattern Recognition Journal of Chemical Information and Modeling., 50 (6) (2010), pp. 1034-1041 Jun 28spa
dcterms.references14 Bucci, N., Luna, M., Viloria, A., García, J.H., Parody, A., Varela, N., & López, L.A.B. [2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data [pp. 149-158). Springer,
dcterms.references15 Kyoto Encyclopedia of Genes and Genomes, «KEGG Release Notes, » [En línea). Available: [Último acceso: 10 octubre 2018).spa
dcterms.references16 Kyoto Encyclopedia of Genes and Genomes, «KEGG release history, » 2018. [En línea). Available: [Último acceso: 17 octubre 2018).spa
dcterms.references17 M. Linderman, J. Sorenson, L. Lee, G. Nolan Computational solutions to large-scale data management and analysis Nature Reviews Genetics, 11 (2010), pp. 647-657spa
dcterms.references18 L. Wang, X. Qung Xie Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? Future Med Chem, 6 (3) (2014), pp. 247-249spa
dcterms.references19 Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., & López, L.A.B. [2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data [pp. 304-313). Springer,
dcterms.references20 J. Swamidass†, P. Baldi Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval Journal of Chemical Information and Modeling, 47 (1) (2006), pp. 952-964spa
dcterms.references21 S. Arif, J. Holliday, P. Willett Comparison of chemical similarity measures using different numbers of query structures Journal of Information Science, 39 (1) (2013), pp. 1-8spa
dcterms.references22 Equipo Colombiano Interdisciplinario de Trabajo Fo¬rense y Asistencia Psicosocial. Apreciaciones a las exhumaciones e investigaciones forenses realizadas por la Unidad Nacional de Justicia y Paz de la Fisca¬lía General de la Nación. Bogotá, Colombia: Fiscalía General de la Nación;
dcterms.references23 Morales V, Martínez WA, Molano CP, Novoa NA, González CM, Pineda MT, et al. Informe de rendición de cuentas a los ciudadanos año 2011 Fiscalía General de la Nación, Imprenta Nacional, Bogotá, Colombia (2012)spa
dcterms.references24 Bilge Y, Kedici PS, Alakoç YD, Ülküer KÜ, Ilkyaz YY The identification of a dismembered human body: a multidisciplinary approach Forensic Sci Int., 137 (2-3) (2003), pp. 141-146 Novspa
dcterms.references25 Benazzi S, Fantini M, De Crescenzio F, Mallegni G, Mallegni F, Persiani F, Gruppioni F The face of the poet Dante Alighieri reconstructed by virtual modelling and forensic anthropology techniques J Archaeol Sci., 36 (2) (2009), pp. 278-283 Febspa
dcterms.references26 Wei JT, Zhang Z, Barnhill SD, Madyastha KR, Zhang H, Oesterling JE Understanding artificial neural net¬works and exploring their potential applications for the practicing urologist Urol., 52 (2) (1998), pp. 161-172 Augspa
dcterms.references27 Resino S, Seoane JA, Bellon JM, Dorado J, Martin- Sanchez F, Alvarez E, Cosín J, López JC, López G, Miralles P, Berenguer J An artificial neural network improves the non-invasive diagnosis of significant fibrosis in HIV/HCV coinfected patients J Infect., 62 (1) (2011), pp. 77-86 Janspa
dcterms.references28 Bloedorn E, Mani I Using NLP for machine learning of user profiles Intell Data Anal., 2 (1-4) (1998), pp. 3-18 Janspa
dcterms.references29 Gamero, W.M., Ramírez, M.C., Parody, A., Viloria, A., López, M.H.A., & Kamatkar, S.J. (2018, June). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244-253). Springer,

Files in this item


This item appears in the following Collection(s)

  • Artículos científicos [2634]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International