Show simple item record

dc.creatorGamarra, Margarita
dc.creatorZurek, Eduardo
dc.creatorNieto Bernal, Wilson
dc.creatorJimeno, Miguel
dc.creatorSierra, Deibys
dc.description.abstractThe advancement in biological and medical image acquisitions has allowed the development of numerous investigations in different fields supported by image analysis, from cell to physiological level. The complexity in the treatment of data, generated by image analysis, requires a structured methodology for software development. In this paper we proposed a framework to develop a software solution with a Service-Oriented Architecture (SOA) applied to the analysis of biological images. The framework is completed with a novel image analysis methodology that would help researchers to achieve better results in their image analysis projects. We evaluate our proposal in a scientific project related to cell image
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.sourceLecture Notes in Computer Sciencespa
dc.subjectSpiral methodologyspa
dc.subjectBio-image informaticsspa
dc.subjectCell image processingspa
dc.subjectRespiratory Syncytial Virusspa
dc.titleSpiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infectionspa
dcterms.references1. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 1827–1836 (2008).spa
dcterms.references3. Gamarra, M., Zurek, E., Nieto, W., Jimeno, M., Sierra, D.: A service-oriented architecture for bioinformatics: an application in cell image analysis. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 724–734. Springer, Cham (2017).spa
dcterms.references4. Zorrilla, M., García-Saiz, D.: A service oriented architecture to provide data mining services for non-expert data miners. Decis. Support Syst. 55, 399–411 (2013).spa
dcterms.references5. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).spa
dcterms.references6. Abramoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).spa
dcterms.references7. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK–the Insight Toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)spa
dcterms.references8. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).spa
dcterms.references9. Pelet, S., Dechant, R., Lee, S.S., van Drogen, F., Peter, M.: An integrated image analysis platform to quantify signal transduction in single cells. Integr. Biol. (Camb). 4, 1274–1282 (2012).spa
dcterms.references10. Kvilekval, K., Fedorov, D., Obara, B., Singh, A., Manjunath, B.S.: Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010).spa
dcterms.references11. Ahmed, Z., Zeeshan, S., Dandekar, T.: Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research 3, 71 (2014).spa
dcterms.references12. Sharma, A., Vidyapeeth, J.R.N.R.: Application of AOP methodology in eclipse-AJDT environment for developing bioinformatics software (n.d.).spa
dcterms.references13. Al-Otaibi, N.M., Noaman, A.Y.: Biological data integration using SOA. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5, 74–79 (2011)spa
dcterms.references14. Castillo, J.C., Almeida, F., Blanco, V., Ramírez, M.C.: Web services based platform for the cell counting problem. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 83–92. Springer, Cham (2014).spa
dcterms.references15. Tosi, S., Bardia, L., Filgueira, M., Calon, A., Colombelli, J.: LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data. Bioimage Inform. 36(8), 2634–2635 (2019).spa
dcterms.references16. Boehm, B.W.: A spiral model of software development and enhancement. Comput. (Long. Beach. Calif.). 21, 61–72 (1988).spa
dcterms.references17. Moeslund, T.B.: Image Acquisition, pp. 7–24 (2012).spa
dcterms.references18. Gonzalez, R.C.: Digital Image Processing. Pearson Education, Upper Saddle River (2009)spa
dcterms.references19. Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.S.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl., 1–24 (2016).spa
dcterms.references20. CMMI® for Development, Version 1.3—CMMI Institute. CMMI Institute (2010)spa
dcterms.references21. González-Castaño, D.M., Pena, J., Gómez, F., Gago-Arias, A., González-Castaño, F.J., Rodríguez-Silva, D.A., et al.: eIMRT: a web platform for the verification and optimization of radiation treatment plans. J. Appl. Clin. Med. Phys. 10, 2998 (2009)spa
dcterms.references22. Xiang, X.: Service-oriented architecture for integration of bioinformatic data and applications. University of Notre Dame (2007)spa
dcterms.references23. Gamarra, M., Zurek, E., Escalante, H.J., Hurtado, L., San-Juan-Vergara, H.: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process Control (53) (2019).spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International