Show simple item record

dc.creatorBustamante Sánchez, Álvaro
dc.creatorClemente-Suárez, Vicente Javier
dc.date.accessioned2021-02-05T23:14:04Z
dc.date.available2021-02-05T23:14:04Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7837
dc.description.abstractDisorientation is one of the most important hazards in flights, but there is a need for a deeper analysis of its effect on the psychophysiological response of pilots. This study aimed to analyse the effect of disorientation training in cortical arousal, autonomic modulation, muscle strength, and perception. We analysed 39 male pilots of the Spanish Army and Air Force (27 Helicopter Pilots, 7 Transport Pilots and 5 F-18 Fighter Pilots) before and after disorientation training. Disorientation training produced an increase in perceived stress and effort in Helicopter Pilots (HP) and Transport Pilots (TP), and lower Heart Rate Variability (RMSSD) in all pilots. Rating of Perceived Exertion (RPE) and Handgrip Strength were more negatively affected among HP than in TP. RPE was more negatively affected in HP than among Fighter Pilots (FP). Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1 s (FEV1) were significantly higher in FP (FVC 5.44 ± .407 l, FEV1 4.57 ± .407 l) than in HP (FVC 4.73 ± .547 l, FEV1 3.79 ± .712 l). Disorientation training affects the psychophysiological response of pilots, and different responses are depending on each job profile. These results could help to improve specific training for better preparation of pilots that face disorientation threatsspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Psychophysiology and Biofeedbackspa
dc.subjectDisorientationspa
dc.subjectPilotsspa
dc.subjectAutonomic modulationspa
dc.subjectCortical arousalspa
dc.subjectSpirometryspa
dc.subjectTrainingspa
dc.titlePsychophysiological response to disorientation training in different aircraft pilotsspa
dc.typearticlespa
dcterms.referencesBarak, Y., David, D., & Akselrod, S. (1999). Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate. Computers in Cardiology, 26, 627–630.spa
dcterms.referencesBenson, A., & Stott, J. (2006). SpatBenson, A., & Stott, J. (2006). Spatial disorientation in flight. Ernsting's Aviation Medicine E, 4, 433.ial disorientation in flight. Ernsting's Aviation Medicine E, 4, 433.spa
dcterms.referencesBraithwaite, M. G., Durnford, S. J., Crowley, J. S., Rosado, N. R., & Albano, J. P. (1998). Spatial disorientation in US Army rotary-wing operations. Aviation, Space, and Environmental Medicine, 69(11), 1031–1037.spa
dcterms.referencesBustamante-Sánchez, Á., Delgado-Terán, M., & Clemente-Suárez, V. J. (2019). Psychophysiological response of different aircrew in normobaric hypoxia training. Ergonomics, 62(2), 277–285. https://doi.org/10.1080/00140139.2018.1510541.spa
dcterms.referencesBustamante-Sánchez, Á., Loarte-Herradón, V. M., Gallego-Saiz, J. F., Trujillo-Laguna, T., & Clemente-Suárez, V. J. (2018). Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training. Archivos de Medicina del Deporte, 35(2), 99–102.spa
dcterms.referencesCheung, B., & Ercoline, W. (2018). Semicircular canal size and shape influence on disorientation. Aerospace Medicine and Human Performance, 89(8), 744–748.spa
dcterms.referencesCheung, B., Money, K., Wright, H., & Bateman, W. (1995). Spatial disorientation-implicated accidents in Canadian forces, 1982–92. Aviation, Space, and Environmental Medicine, 66(6), 579–585.spa
dcterms.referencesClemente-Suárez, V. J. (2013). Efecto sobre variables espirométricas basales de tres programas para el desarrollo de la resistencia aeróbica de 4 semanas de duración en atletas. Journal of Sport and Health Research, 5(2), 211–220.spa
dcterms.referencesClemente-Suárez, V. J. (2017). The application of cortical arousal assessment to control neuromuscular fatigue during strength training. Journal of Motor Behavior, 49(4), 429–434.spa
dcterms.referencesClemente-Suárez, V. J., Diaz-Manzano, M., & Robles-Pérez, J. J. (2017a). Use of minicameras to improve operative procedure in security forces. Journal of Medical Systems, 41(9), 130.spa
dcterms.referencesClemente-Suárez, V. J., Fernandes, R. J., Arroyo-Toledo, J., Figueiredo, P., González-Ravé, J. M., & Vilas-Boas, J. (2015). Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiologica Hungarica, 102(1), 105–113.spa
dcterms.referencesClemente-Suárez, V. J., & Robles-Pérez, J. J. (2013a). Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat. The Journal of Strength & Conditioning Research, 27(9), 2420–2426.spa
dcterms.referencesClemente-Suárez, V. J., & Robles-Pérez, J. J. (2013b). Psycho-physiological response of soldiers in urban combat. Annals of Psychology, 29(2), 598–603.spa
dcterms.referencesClemente-Suárez, V. J., Robles-Pérez, J. J., & Fernández-Lucas, J. (2017b). Psycho-physiological response in an automatic parachute jump. Journal of Sports Sciences, 35(19), 1872–1878.spa
dcterms.referencesClemente-Suarez, V. J., Robles-Pérez, J. J., Herrera-Mendoza, K., Herrera-Tapias, B., & Fernández-Lucas, J. (2017). Psychophysiological response and fine motor skills in high-altitude parachute jumps. High Altitude Medicine & Biology, 18(4), 392–399.spa
dcterms.referencesDelgado-Moreno, R., Robles-Pérez, J. J., & Clemente-Suárez, V. J. (2017). Combat stress decreases memory of warfighters in action. Journal of Medical Systems, 41(8), 124.spa
dcterms.referencesDiaz-Manzano, M., Robles-Pérez, J. J., Herrera-Mendoza, K., Herrera-Tapias, B., Fernández-Lucas, J., Aznar-Lain, S., et al. (2018). Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population. Journal of Medical Systems, 42(5), 84.spa
dcterms.referencesGibb, R., Ercoline, B., & Scharff, L. (2011). Spatial disorientation: Decades of pilot fatalities. Aviation, Space, and Environmental Medicine, 82(7), 717–724spa
dcterms.referencesGiles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571.spa
dcterms.referencesHolmes, S. R., Bunting, A., Brown, D. L., Hiatt, K. L., Braithwaite, M. G., & Harrigan, M. J. (2003). Survey of spatial disorientation in military pilots and navigators. Aviation, Space, and Environmental Medicine, 74(9), 957–965.spa
dcterms.referencesKaravidas, M. K., & Lehrer, P. M. (2009). In-flight hyperventilation among airline pilots. Aviation, Space, and Environmental Medicine, 80(5), 495–496.spa
dcterms.referencesKaravidas, M. K., Lehrer, P. M., Lu, S.-E., Vaschillo, E., Vaschillo, B., & Cheng, A. (2010). The effects of workload on respiratory variables in simulated flight: A preliminary study. Biological Psychology, 84(1), 157–160.spa
dcterms.referencesKaravidas, M. K., Lehrer, P., Vaschillo, E. G., Vaschillo, B., Lu, S. -E., & Karavidas, P. (2006). The use of physiological measurement in the assessment of flight task difficulty under simulated conditions. In Psychophysiology society for psychophysiological research, Vancouver, BC October 25–29 2006 (Vol. 43, pp. 50–50)spa
dcterms.referencesLehrer, P., Karavidas, M., Lu, S.-E., Vaschillo, E., Vaschillo, B., & Cheng, A. (2010). Cardiac data increase association between self-report and both expert ratings of task load and task performance in flight simulator tasks: An exploratory study. International Journal of Psychophysiology, 76(2), 80–87.spa
dcterms.referencesLyons, T. J., Ercoline, W. R., Freeman, J., & Gillingham, K. (1994). Classification problems of US Air Force spatial disorientation accidents, 1989–91. Aviation, Space, and Environmental Medicine, 65(2), 147–152.spa
dcterms.referencesLyons, T. J., Ercoline, W., O’Toole, K., & Grayson, K. (2006). Aircraft and related factors in crashes involving spatial disorientation: 15 years of US Air Force data. Aviation, Space, and Environmental Medicine, 77(7), 720–723.spa
dcterms.referencesMcCormick, T., & Lyons, T. (1991). Medical causes of in-flight incapacitation: USAF experience 1978–1987. Aviation, Space, and Environmental Medicine, 62(9 Pt 1), 884–887.spa
dcterms.referencesNewman, D. G. (2007). An overview of spatial disorientation as a factor in aviation accidents and incidents (Vol. B2007/0063). Canberra City: Australian Transport Safety Bureau.spa
dcterms.referencesPetrassi, F. A., Hodkinson, P. D., Walters, P. L., & Gaydos, S. J. (2012). Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviation, Space, and Environmental Medicine, 83(10), 975–984.spa
dcterms.referencesRhea, M. R. (2004). Determining the magnitude of treatment effects in strength training research through the use of the effect size. Journal of Strength and Conditioning Research, 18, 918–920.spa
dcterms.referencesSánchez-Molina, J., Robles-Pérez, J. J., & Clemente-Suárez, V. J. (2018). Assessment of psychophysiological response and specific fine motor skills in combat units. Journal of Medical Systems, 42(4), 67.spa
dcterms.referencesSandín, B. (2003). El estrés: un análisis basado en el papel de los factores sociales. Revista Internacional de Psicología Clínica y de la Salud, 3(1), 141–157.spa
dcterms.referencesTornero-Aguilera, J. F., Robles-Pérez, J. J., & Clemente-Suárez, V. J. (2017). Effect of combat stress in the psychophysiological response of elite and non-elite soldiers. Journal of Medical Systems, 41(6), 100.spa
dcterms.referencesTruszczyński, O., Wojtkowiak, M., Biernacki, M., & Kowalczuk, K. (2009). The effect of hypoxia on the critical flicker fusion threshold in pilots. International Journal of Occupational Medicine and Environmental Health, 22(1), 13–18.spa
dcterms.referencesVigo, D. E., Lloret, S. P., Videla, A. J., Chada, D. P., Hünicken, H. M., Mercuri, J., et al. (2010). Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude. Wilderness & Environmental Medicine, 21(1), 4–10.spa
dcterms.referencesZużewicz, K., Biernat, B., Kempa, G., & Kwarecki, K. (1999). Heart rate variability in exposure to high altitude hypoxia of short duration. International Journal of Occupational Safety and Ergonomics, 5(3), 337–346.spa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.source.urlhttps://link.springer.com/article/10.1007/s10484-020-09478-9#:~:text=Disorientation%20training%20produced%20an%20increase,among%20HP%20than%20in%20TP.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/s10484-020-09478-9


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International