Mostrar el registro sencillo del ítem

dc.contributor.authorSantos, Joaospa
dc.contributor.authorVega A, Daniela Lspa
dc.contributor.authorMartinez Arguelles, Gilbertospa
dc.date.accessioned2021-02-05T23:16:21Z
dc.date.available2021-02-05T23:16:21Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7840spa
dc.description.abstractIn this study a comparative life cycle assessment (LCA) was conducted according to a ‘cradle-to-laid’ approach to evaluate the potential environmental impacts related to the use of recycled concrete aggregates (RCAs) as a partial replacement of coarse natural aggregates in the production of Hot Mix Asphalt (HMA). Specifically, three percentages of RCA replacements were analyzed: 15, 30 and 45%. Primary data collected mainly through surveys performed in Colombian contractors from the region of Barranquila were used to model the foreground system. The SimaPro 8.4.0 software was used for modelling the processes analyzed in the case study and all the life cycle inputs and outputs related to the functional unit were characterised during life cycle impact assessment (LCIA) phase into potential impacts according to the TRACI v.2.1 impact assessment methodology. The results of the case study showed that the mixtures incorporating 15 and 30% of RCA can be considered as eco-friendly alternatives to the conventional mixture (i.e. no RCA content), as both allow reductions in all impact categories scores. On the contrary, the mixture that contains 45% of RCA denoted a lower environmental performance than that of the conventional mixture.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourceInternational Journal of Pavement Engineeringspa
dc.subjectLife cycle assessment (LCA)spa
dc.subjecthot mix asphalt (HMA)spa
dc.subjectrecycled concrete aggregate (RCA)spa
dc.subjectsustainable pavement construction and managementspa
dc.titleLife cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements constructionspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.tandfonline.com/doi/full/10.1080/10298436.2020.1778694spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1080/10298436.2020.1778694spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAlbayati, A. , et al. , 2018. A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates. Sustainable Materials and Technologies , 20, e00081spa
dc.relation.referencesAndrojic, I. , et al. , 2020. Analysis of impact of aggregate moisture content on energy demand during the production of hot mix asphalt (HMA). Journal of Cleaner Production , 244, 118868spa
dc.relation.referencesArabani, M. and Azarhoosh, A.R. , 2012. The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures. Construction and Building Materials , 35, 1–7.spa
dc.relation.referencesAzarijafari, H. , Yahia, A. , and Amor, M.B. , 2016. Life cycle assessment of pavements: reviewing research challenges and opportunities. Journal of Cleaner Production , 112, 2187–2197spa
dc.relation.referencesBalaguera, A. , et al. , 2018. Life cycle assessment of road construction alternative materials: a literature review. Resources, Conservation & Recycling , 132, 37–48.spa
dc.relation.referencesBare, J. , 2012. Tool for the reduction and assessment of chemical and other environmental impacts (TRACI), Version 2.1 – User’s Manual. EPA/600/R-12/554, (July).spa
dc.relation.referencesBonicelli, A. , et al. , 2017. Experimental study on the use of rejuvenators and plastomeric polymers for improving durability of high RAP content asphalt mixtures. Construction and Building Materials , 155, 37–44spa
dc.relation.referencesBraga, A.M. , Silvestre, J.D. , and de Brito, J. , 2017. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production , 162, 529–543spa
dc.relation.referencesBressi, S. , et al. , 2019. A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using life cycle assessment.spa
dc.relation.referencesCastro, A. , et al. , 2019. Mechanical properties of cold recycled bituminous mixes with crumb rubber. IOP Conference Series: Materials Science and Engineering , 471 (10), 102044.spa
dc.relation.referencesClavreul, Julie , Guyonnet, Dominique , and Christensen, Thomas H. , 2012. Quantifying uncertainty in LCA-modelling of waste management systems. Waste Management , 32 (12), 2482–2495spa
dc.relation.referencesColangelo, F. , et al. , 2018. Life cycle assessment of recycled concretes: a case study in southern Italy. Science of the Total Environment , 615, 1506–1517.spa
dc.relation.referencesCupo-Pagano, M. , et al. , 1994. Use of building demolition waste for asphalt mixes: first results. Energy, environment and technological innovation. In: Proceedings of III International Congress, 203–8.spa
dc.relation.referencesEIA , 2017. CO2 emissions from fuel combustion 2017 highlightsspa
dc.relation.referencesEstanqueiro, B. , et al. , 2016. Environmental life cycle assessment of coarse natural and recycled aggregates for concrete.spa
dc.relation.referencesFederal Highway Administration Research and Technology , 2016. User guidelines for waste and byproduct materials in pavement construction. Available from: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/rap131.cfm .spa
dc.relation.referencesGallego, J. and Toledano, M. , 2010. Asphalt mixtures with construction and demolition debris (January).spa
dc.relation.referencesHarvey, J.T. , et al. , 2016. Pavement life cycle assessment framework (No. FHWA-HIF-16-014). United States. Federal Highway Administration.spa
dc.relation.referencesHossain, M.U. , et al. , 2016. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA.spa
dc.relation.referencesINVIAS , 2013. Secciones 700 y 800 – Materiales y mezclas asfálticas y prospección de pavimentos (Primera parte)spa
dc.relation.referencesINVIAS , 2014a. ‘CAPÍTULO 3 - AFIRMADOS, SUBBASES Y BASES’spa
dc.relation.referencesINVIAS , 2014b. Capítulo 4 – Pavimentos Asfálticos .spa
dc.relation.referencesInyim, P. , et al. , 2016. Environmental assessment of pavement infrastructure: a systematic review. Journal of Environmental Management , 176, 128–138.spa
dc.relation.referencesISO , 2006. ISO 14040:2006 Environment management- Life cycle assessment- Principles and framework.spa
dc.relation.referencesJiang, R. and Wu, P. , 2019. Estimation of environmental impacts of roads through life cycle assessment: a critical review and future directions. Transportation Research Part D: Transport and Environment , 77, 148–163.spa
dc.relation.referencesJiménez, C. , et al. , 2015. LCA of recycled and conventional concretes designed using the equivalent mortar volume and classic methods.spa
dc.relation.referencesKim, M. , et al. , 2018. Fatigue performance of asphalt mixture containing recycled materials and warm-mix technologies under accelerated loading and four point bending beam test.spa
dc.relation.referencesLandi, D. , et al. , 2020. Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures.spa
dc.relation.referencesLaurance, W.F. , et al. , 2014. A global strategy for road building. Nature , 513, 229–232spa
dc.relation.referencesLi, J. , et al. , 2019. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a review. Journal of Cleaner Production , 233, 1182–1206.spa
dc.relation.referencesLu, W. and Yuan, H. , 2011. A framework for understanding waste management studies in construction. Waste Management , 31 (6), 1252–1260.spa
dc.relation.referencesMarcilio, G.P. , et al. , 2018. Analysis of greenhouse gas emissions in the road freight transportation using simulation. Journal of Cleaner Production , 170, 298–309.spa
dc.relation.referencesMarinković, S. , et al. , 2010. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management , 30 (11), 2255–2264.spa
dc.relation.referencesMartinez-Arguelles, G. , Acosta, M.P. , et al. , 2019b. Life cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the Northern region of Colombia: case studyspa
dc.relation.referencesMartinez-Arguelles, G. , Dugarte, M. , et al. , 2019a. Characterization of recycled concrete aggregate as potential replacement of natural aggregate in asphalt pavement.spa
dc.relation.referencesMills-Beale, J. and You, Z. , 2010. The mechanical properties of asphalt mixtures with recycled concrete aggregates. Construction and Building Materials , 24 (3), 230–235spa
dc.relation.referencesNational Administrative Department of Statistics DANE , 2012. Direction of statistical production methodology DIMPE, 1–53.spa
dc.relation.referencesParajuli, S.P. , et al. , 2011. A comparative life cycle assessment (LCA) of using virgin crushed aggregate (VCA) and recycled waste concrete aggregate (RCA) in road construction.spa
dc.relation.referencesParanavithana, S. and Mohajerani, A. , 2006. Effects of recycled concrete aggregates on properties of asphalt concrete. Resources, Conservation and Recycling , 48 (1), 1–12.spa
dc.relation.referencesPasandín, A.R. , and Pérez, I. , 2014. Effect of ageing time on properties of hot-mix asphalt containing recycled concrete aggregates. Construction and Building Materials , 52, 284–293.spa
dc.relation.referencesPasandín, A.R. and Pérez, I. , 2015. Overview of bituminous mixtures made with recycled concrete aggregates. Construction and Building Materials , 74, 151–161.spa
dc.relation.referencesPraticò, F.G. , et al. , 2020. Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads. Sustainability , 12, 704.spa
dc.relation.referencesPRé Consultants , 2014. SimaPro.spa
dc.relation.referencesRosado, L.P. , et al. , 2017. Life cycle assessment of natural and mixed recycled aggregate production in Brazil. Journal of Cleaner Production , 151, 634–642spa
dc.relation.referencesSaberi, K.F. , Fakhri, M. , and Azami, A. , 2017. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. Journal of Cleaner Production , 165, 1125–1132.spa
dc.relation.referencesSantero, N.J. , Masanet, E. , and Horvath, A. , 2011a. Life-cycle assessment of pavements. Part I: critical review. Resources, Conservation & Recycling , 55 (9–10), 801–809.spa
dc.relation.referencesSantero, N.J. , Masanet, E. , and Horvath, A. , 2011b. Life-cycle assessment of pavements Part II: filling the research gaps. Resources, Conservation & Recycling , 55 (9–10), 810–818spa
dc.relation.referencesSantos, J. , et al. , 2015b. A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices.spa
dc.relation.referencesSantos, J. , et al. , 2018. Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: a comparative analysisspa
dc.relation.referencesSantos, J. , Ferreira, A. , and Flintsch, G. , 2015a. A life cycle assessment model for pavement management: road pavement construction and management in Portugal.spa
dc.relation.referencesSchrijvers, D.L. , Loubet, P. , and Sonnemann, G. , 2016. Developing a systematic framework for consistent allocation in LCA.spa
dc.relation.referencesShi, X. , et al. , 2019. Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate.spa
dc.relation.referencesThenoux, G. , González, Á. , and Dowling, R. , 2007. Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile.spa
dc.relation.referencesUniversidad De Costa Rica , 2015. PITRA PAVE 1.0.0 – Software de multicapa elástica.spa
dc.relation.referencesVega Araujo, D.L. , Martinez-Arguelles, G. , and Santos, J. , 2019. Life cycle assessment of warm mix asphalt with recycled concrete aggregate.spa
dc.relation.referencesWang, H. and Gangaram, R. , 2014. Life cycle assessment of asphalt pavement maintenance (No. CAIT-UTC-013).spa
dc.relation.referencesWest, R. , et al. , 2014. Field performance of warm mix asphalt technologies (National Cooperative Highway Research Program Report No. 779) .spa
dc.relation.referencesZhang, Z. , et al. , 2016. Key performance properties of asphalt mixtures with recycled concrete aggregate from low strength concrete.spa
dc.relation.referencesZhang, Y. , et al. , 2019. A review of life cycle assessment of recycled aggregate concrete.spa
dc.relation.referencesZulkati, A. , Wong, Y.D. , and Sun, D. D. , 2013. Mechanistic performance of asphalt-concrete mixture incorporating coarse recycled concrete aggregate.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3154]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International