Mostrar el registro sencillo del ítem

dc.contributor.authorSoto, E.H.spa
dc.contributor.authorBotero, C. M.spa
dc.contributor.authorMilanés Batista, Celenespa
dc.contributor.authorRodríguez-Santiago, A.spa
dc.contributor.authorPalacios-Moreno, M.spa
dc.contributor.authorDíaz-Ferguson, E.spa
dc.contributor.authorVelázquez, Y. R.spa
dc.contributor.authorAbbehusen, A.spa
dc.contributor.authorGuerra-Castro, E.spa
dc.contributor.authorSimoes, N.spa
dc.contributor.authorMuciño-Reyes, M.spa
dc.contributor.authorSouza Filho, J. R.spa
dc.date.accessioned2021-02-11T20:49:48Z
dc.date.available2021-02-11T20:49:48Z
dc.date.issued2021-03
dc.identifier.issn0006-3207spa
dc.identifier.urihttps://hdl.handle.net/11323/7864spa
dc.description.abstractUrban tourist beach ecosystems provide the essential service of recreation. These ecosystems also support critical ecological functions where biodiversity conservation is not usually a priority. The sudden lockdown due to the COVID-19 pandemic created a unique opportunity to evaluate the effects of human absence in these urban-coastal ecosystems. This study examined bioindicators from 29 urban tourist beaches in seven Latin-American countries and assesses their response to lockdown about some relevant anthropogenic stressors such as pollution, noise, human activities, and user density. The presence of animals and plants, as well as the intensity of stressors, were assessed through a standardized protocol during lockdown conditions. Additionally, the environmental conditions of the beaches before and during lockdown were qualitatively compared using multivariate non-parametric statistics. We found notable positive changes in biological components and a clear decrease in human stressors on almost all the beaches. Dune vegetation increased on most sites. Similarly, high burrow densities of ghost crabs were observed on beaches, except those where cleaning activity persisted. Because of the lockdown, there was an exceptionally low frequency of beach users, which in turn reduced litter, noise and unnatural odors. The observed patterns suggest that tourist beaches can be restored to natural settings relatively quickly. We propose several indicators to measure changes in beaches once lockdown is relaxed. Adequate conservation strategies will render the recreational service of tourist beaches more environmental-friendly.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceBiological Conservationspa
dc.subjectTourist beachesspa
dc.subjectBioindicatorsspa
dc.subjectStressorsspa
dc.subjectCoronavirusspa
dc.subjectCoastal biodiversityspa
dc.subjectWildlife conservationspa
dc.titleHow does the beach ecosystem change without tourists during COVID-19 lockdown?spa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S0006320721000240#!spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.biocon.2021.108972spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAfghan, A., Cerrano, C., Luzi, G., Calcinai, B., Puce, S., Pulido Mantas, T., Roveta, C., Di Camillo, C.G., 2020. Main anthropogenic impacts on benthic macrofauna of sandy beaches: a review. J. Mar. Sci. Eng. 8, 405.spa
dc.relation.referencesAmyot, J., Grant, J., 2014. Environmental Function Analysis: a decision support tool for integrated sandy beach planning. Ocean Coast. Manag. 102, 317–327. https://doi. org/10.1016/j.ocecoaman.2014.10.009.spa
dc.relation.referencesAndres,´ M., Barragan, J.M., Garcia-Sambria, J., 2017. Relationships between coastal urbanization and ecosystems in Spain. CITIES 68, 8–17.spa
dc.relation.referencesAraújo, M., Silva-Cavalcanti, J., Costa, M., 2018. Anthropogenic litter on beaches with different levels of development and use: a snapshot of a coast in Pernambuco (Brazil). Front. Mar. Sci. 5, 233. https://doi.org/10.3389/fmars.2018.00233.spa
dc.relation.referencesAriza, E., Sarda, ´ R., Jimenez, ´ J.A., Mora, J., Avila, ´ C., 2007. Beyond performance assessment measurements for beach management: application to Spanish Mediterranean beaches. Coast. Manag. 36 (1), 47–66. https://doi.org/10.1080/ 08920750701682023.spa
dc.relation.referencesBates, A.E., Primack, R., Moraga, P., Duarte, C., 2020. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108,665. doi.org/https://doi.org/10 .1016/j.biocon.2020.108665.spa
dc.relation.referencesBatista-Milan´es, C., 2018. Coastal risk. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, 2nd, 1. Springer Nature, Cham, Switzerland, pp. 524–534.spa
dc.relation.referencesBecken, S., 2016. Climate Change Impacts on Coastal Tourism. CoastAdapt Impact Sheet. National Climate Change Adaptation Research Facility, Gold Coast, p. 6.spa
dc.relation.referencesBessa, F., Gonçalves, S.C., Franco, J., Andre,´ J., Cunha, P., Marques, J., 2014. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecol. Indic. 41, 49–57.spa
dc.relation.referencesBir, B., 2020. https://www.aa.com.tr/en/health/single-use-items-not-safest-option-am idcovid-19/1787067. (Accessed 4 September 2020).spa
dc.relation.referencesBirk, S., Chapman, D., Carvalho, L., et al., 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.spa
dc.relation.referencesBlankensteyn, A., 2006. O uso do caranguejo maria-farinha Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) como indicador de impactos antropogenicos ˆ em praias arenosas da Ilha de Santa Catarina, Santa Catarina, Brasil. Rev. Bras. de Zool. 23 (3), 870–876. https://doi.org/10.1590/S0101-81752006000300034.spa
dc.relation.referencesBom, F., Colling, L., 2020. Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 41, e12595 https://doi.org/10.1111/maec.12595.spa
dc.relation.referencesBotero, C., Pereira, C., Tosic, M., Manjarrez, G., 2015. Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast. Manag. 108, 65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017.spa
dc.relation.referencesBotero, C.M., Cabrera, J.A., Zielinski, S., 2018. Tourist beaches. In: Finkl, C., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48,657-4_ 401–1.spa
dc.relation.referencesBoudouresque, C.F., Ponel, P., Astruch, P., Barcelo, A., Blanfune,´ A., Geoffroy, D., Thibaut, T., 2017. The high heritage value of the Mediterranean sandy beaches, with a particular focus on the Posidonia oceanica “banquettes”: a review. Sci. Rep. Port- Cros Natl. Park 31, 23–70.spa
dc.relation.referencesBoyes, K., 2016. Applying Wildlife Conservation Tourism to Marine Endangered Species: Identifying Indicators for Triple Bottom Line Sustainability. University of Washington (Master of Marine Affairs Thesis, 78 pages).spa
dc.relation.referencesBracken, M., Friberg, S., Gonzalez-Dorantes, C., Williams, S., 2008. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl. Acad. Sci. U. S. A. 105, 924–928.spa
dc.relation.referencesBrown, A., McLachlan, A., 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Env. Conserv. 29, 62–77. https://doi.org/ 10.1017/S037689290200005X.spa
dc.relation.referencesCanning-Clode, J., Sepúlveda, P., Almeida, S., Monteiro, J., 2020. Will COVID-19 containment and treatment measures drive shifts in marine litter pollution? Front. Mar. Sci. 7, 691. https://doi.org/10.3389/fmars.2020.00691.spa
dc.relation.referencesCanteiro, M., Cordova-Tapia, ´ F., Brazeiro, A., 2018. Tourism impact assessment: a tool to evaluate the environmental impacts of touristic activities in Natural Protected Areas. Tour. Manag. Pers. 28, 220–227. https://doi.org/10.1016/j.tmp.2018.09.007.spa
dc.relation.referencesClarke, K., 1993. Non-parametric multivariate analyses of changes in community structure. Austral. Jour. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442- 9993.1993.tb00438.x.spa
dc.relation.referencesClarke, K., Gorley, R., Somerfield, P., Warwick, R., 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. In: Plymouth. Ltd, PRIMER-E.spa
dc.relation.referencesCristiano, S.C., Rockett, G.C., Portz, L.C., Souza Filho, J.R., 2020. Beach landscape management as a sustainable tourism resource in Fernando de Noronha Island (Brazil). Mar. Poll. Bull. 150, 1–13. https://doi.org/10.1016/j. marpolbul.2019.110621.spa
dc.relation.referencesDavis, R.A., 2019. Human impact on coasts. In: Finkl, C.W., Makowski, C. (Eds.), Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-93,806-6_175.spa
dc.relation.referencesDefeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T.A., Dugan, J., Jones, A., Lastra, M., Scapini, F., 2009. Threats to sandy beach ecosystems: a review. Est. Coast. Shelf Sci. 81, 1–12. https://doi.org/10.1016/j.ecss.2008.09.022.spa
dc.relation.referencesDerryberry, E.P., Phillips, J.N., Derryberry, G.E., Blum, M.J., Luther, D., 2020. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 340, 574–579.spa
dc.relation.referencesDodds, R., Holmes, M., 2019a. Beach tourists; what factors satisfy them and drive them to return. Ocean Coast. Manag. 168, 158–166. https://doi.org/10.1016/j. ocecoaman.2018.10.034.spa
dc.relation.referencesDodds, R., Holmes, M.R., 2019b. Preferences at city and rural beaches: are the tourists different? Jour. of Coast. Res. 36 (2), 393–402. https://doi.org/10.2112/ JCOASTRES-D-19-00048.1.spa
dc.relation.referencesFrancis, C., Ortega, C., Cruz, A., 2009. Noise pollution changes avian communities and species interactions. Curr. Biol. 19 (16), 1415–1419. DOI: doi:https://doi. org/10.1016/j.cub.2009.06.052.spa
dc.relation.referencesGaynor, K., Hojnowski, C., Carter, N., Brashares, J., 2018. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/ 10.1126/science.aar7121.spa
dc.relation.referencesGheskiere, T., Vincx, M., Weslawski, J.M., Scapini, F., Degraer, S., 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Mar Environ Res. 60 (2), 245–65. DOI: https://doi.org/10.1016/j.marenvres.2004.10.006. Epub 2004 Dec 7. PMID: 15757751.spa
dc.relation.referencesGilby, B.L., Henderson, C.J., Olds, A.D., Ballantyne, J.A., Bingham, E.L., Elliott, B.B., Jones, T.R., Kimber, O., Mosman, J.D., Schlacher, T.A., 2021. Negative ecological consequences of animal redistribution on beaches during COVID-19 lockdown. Biol Conserv. 253, 108926.spa
dc.relation.referencesGORC, 2000. Decreto-Ley 212. Gestion´ de la Zona Costera. Official Gazette of the Republic of Cuba. Citma. Cuba, La Habana, p. 18.spa
dc.relation.referencesGreen, R., Giese, M., 2004. Negative effects of wildlife tourism on wildlife. Chapter 5, part. Wildlife Tourism. Impacts, Management and Planning. Editor, Karen Higginbottom, In, p. 2.spa
dc.relation.referencesGuerra-Castro, E., Hidalgo, G., Castillo, R., Mucino-Reyes, ˜ M., Norena-Barroso, ˜ E., Quiroz-Deaquino, J., Mascaro, M., Simoes, N., 2020. Sandy beach macrofauna of Yucatan ´ State (Mexico) and oil industry development in the Gulf of Mexico: first approach for detecting environmental impacts. Front. Mar. Sci. 7, 589656 https:// doi.org/10.3389/fmars.2020.589656.spa
dc.relation.referencesHalpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948. https://doi. org/10.1126/science.1149345.spa
dc.relation.referencesHalpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O’Hara, C., Scarborough, C., Selkoe, K.A., 2019. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11,609. doi.org/https://doi. org/10.1038/s41598-019-47,201-9.spa
dc.relation.referencesHarley, C., Hughes, A., Hultgren, K., Miner, B., Sorte, C., Thornber, C., Rodriguez, L., Tomanek, L., Williams, S., 2006. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871. x.spa
dc.relation.referencesHarris, L., Nel, R., Holness, S., Sink, K., Schoeman, D., 2014. Setting conservation targets for sandy beach ecosystems. Est. Coast. Shelf. Sci. 150, 45–57.spa
dc.relation.referencesHockings, M., Dudley, N., Elliott, W., Ferreira, M., Mackinnon, K., Pasha, M., Phillips, A., Stolton, S., Woodley, S., Appleton, M., Chassot, O., Fitzsimons, J., Galliers, C., Golden Kroner, R., Goodrich, J., Hopkins, J, Jackson, W., Jonas, H., Long, B., Yang, A. 2020. COVID-19 and protected and conserved areas. Parks. 26, 7–24. https://doi. org/10.2305/IUCN.CH.2020.PARKS-26-1MH.en.spa
dc.relation.referencesIoannides, D., Gyimothy, ´ S., 2020. The COVID-19 crisis as an opportunity for escaping the unsustainable global tourism path. Tour. Geogr. 22 (3), 624–632. https://doi. org/10.1080/14616688.2020.1763445.spa
dc.relation.referencesJaramillo, E., 2012. Ecological implications of extreme events on exposed sandy beaches: insights from the 2010 Chilean earthquake. In: VI th International Sandy Beach Symposium. Public Presentation, SouthAfrica. In: June 26th.spa
dc.relation.referencesJarratt, D., Davies, N., 2019. Planning for climate change impacts: coastal tourism destination resilience policies. Tour. Plann. and Develop 17 (4), 423–440. https:// doi.org/10.1080/21568316.2019.1667861.spa
dc.relation.referencesJones, A., Gladstone, W., Hacking, N., 2007. Australian sandy-beach ecosystems and climate change: ecology and management. Zoologist 34 (2), 190–202. https://doi. org/10.7882/AZ.2007.018.spa
dc.relation.referencesKühn, S., Bravo, E., van Franeker, J., 2015. Deleterious effects of litter on marine life. In: Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer International Publishing, Cham, pp. 75–116.spa
dc.relation.referencesLegendre, P., Legendre, L., 2012. Numerical Ecology. Elsevier, Amsterdam.spa
dc.relation.referencesLucrezi, S., Schlacher, T.A., 2014. The ecology of ghost crabs. Oce. and Mar. Biol: An Ann. Rev. 52, 201–256.spa
dc.relation.referencesLucrezi, S., Schlacher, T.A., Walker, S., 2009. Monitoring human impacts on sandy shore ecosystems: a test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environ. Monit. Assess. 152, 413–424. https://doi.org/10.1007/s10661-008- 0326-2.spa
dc.relation.referencesManenti, R., Mori, E., Di Canio, V., Mercurio, S., Picone, M., Caffi, M., Brambilla, M., Ficetola, G., Rubolini, D., 2020. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108,728. doi.org/https://doi.org/10.1016/j. biocon.2020.108728.spa
dc.relation.referencesMarion, J., 2019. Impacts to Wildlife: Managing Visitors and Resources to Protect Wildlife. Contributing Paper. Prepared for the Interagency Visitor Use Management Council, March 2019. In: Edition One.spa
dc.relation.referencesMarion, J., Leung, Y., Eagleston, H., Burroughs, K., 2016. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. Jour. of Forest. 114 (3), 352–362. https://doi.org/10.5849/jof.15- 498.spa
dc.relation.referencesMarshall, F., Banks, K., Cook, G., 2014. Ecosystem indicators for Southeast Florida beaches. Ecol. Indic. 44, 81–91. https://doi.org/10.1016/j.ecolind.2013.12.021. Martínez, A., Eckert, E.M., Artois, T., Careddu, G., Casu, M., Curini-Galletti, M., Gazale, V., Gobert, S., Ivanenko, V., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M.A., Fontaneto, D., 2020. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun. Biol. 3, 175. https://doi.org/ 10.1038/s42003-020-0912-6.spa
dc.relation.referencesMartins, G.A.L., 2007. A macrofauna bentonicaˆ das praias arenosas expostas do Parque Nacional de Superagüi – PR: Subsídios ao Plano de Manejo. In: Dissertaçao˜ (Mestrado em Ecologia e Conservaçao).˜ Setor de Ciˆencias Biologicas´ da Universidade Federal do Parana.´ Curitiba, Programa de Pos´ Graduaçao˜ em Ecologia e Conservaça˜o.spa
dc.relation.referencesMBON Pole to Pole, 2019. Sampling protocol for assessment of marine diversity on sandy beaches. In: Marine Biodiversity Observation Network Pole to Pole of the Americas. https://doi.org/10.25607/OBP-665 (14 pp.).spa
dc.relation.referencesMcLachlan, A., Defeo, O., Jaramillo, E., Short, A.D., 2013. Sandy beach conservation and recreation: guidelines for optimising management strategies for multi-purpose use. Oc. Coast. Manag. 71, 256–268. https://doi.org/10.1016/j.ocecoaman.2012.10.005.spa
dc.relation.referencesMendoza-Gonzalez, ´ G., Martínez, M., Guevara, R., P´erez-Maqueo, O., Garza-Lagler, M., Howard, A., 2018. Towards a sustainable sun, sea, and sand tourism: the value of ocean view and proximity to the coast. Sustainability 10, 1012. https://doi.org/ 10.3390/su10041012.spa
dc.relation.referencesMilanes, ´ C., Pereira, C., Botero, C., 2019. Improving a decree law about coastal zone management in a small island developing state: the case of Cuba. Marine Policy 101, 93–107. https://doi.org/10.1016/j.marpol.2018.12.030 (March).spa
dc.relation.referencesMilanes, ´ C., Planas, J., Pelot, R., Núnez, ˜ J., 2020. A new methodology incorporating public participation within Cuba’s ICZM program. Oce. Coast. Manag. 186 (105), 101. https://doi.org/10.1016/j.ocecoaman.2020.105101.spa
dc.relation.referencesMoraes, F., Milanes, ´ C., 2020. Os limites espaciais da zona costeira para fins de gestao ˜ a partir de uma perspectiva integrada. Cap. 1 pp. [22–50]. In: Souto, R.D. (org.) Gestao ˜ Ambiental e Sustentabilidade em Areas ´ Costeiras e Marinhas: Conceitos e Praticas. ´ Vol. 1. Rio de Janeiro: Instituto Virtual para o Desenvolvimento Sustentavel ´ - IVI DES.org, 2020. [260 p].spa
dc.relation.referencesNiefer, I.A., 2002. Analise´ do perfil dos visitantes das Ilhas do Superagüi e do Mel: Marketing como instrumento para um turismo sustentavel.´ In: Tese (Doutorado em Engenharia Florestal). Universidade Federal do Parana.´ Curitiba, Setor de Cienciasˆ Agraria´ s.spa
dc.relation.referencesOcana, ˜ F., de Jesús, A., Hernandez, ´ H., 2020. Co-occurring factors affecting ghost crab density at four sandy beaches in the Mexican Caribbean. Reg. Stu. in Mar. Sci. 36 (101), 310. https://doi.org/10.1016/j.rsma.2020.101310.spa
dc.relation.referencesOlds, A.D., Vargas-Fonseca, E., Connolly, R.M., Gilby, B.L., Huijbers, C.M., Hyndes, G.A., Layman, C.A., Whitfield, A.K., Schlacher, T.A., 2018. The ecology of fish in the surf zones of ocean beaches: a global review. Fish and Fisher. 19, 78–89.spa
dc.relation.referencesPeng, C., Zhao, X., Liu, G., 2015. Noise in the sea and its impacts on marine organisms. Int. J. Environ. Res. Public Health, 12, 12,304–12,323; doi:https://doi.org/10.33 90/ijerph121012304.spa
dc.relation.referencesPeterson, C., Bishop, M., 2005. Assessing the environmental impacts of beach nourishment. BioScience 55. In: 887e896.spa
dc.relation.referencesR Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project. org/.spa
dc.relation.referencesReyes-Martínez, M.J., Lercari, D., Ruíz-Delgado, M.C., Sanchez-Moyano, ´ J.E., Jimenez- ´ Rodríguez, A., P´erez-Hurtado, A., García-García, F.J., 2015. Human pressure on sandy beaches: implications for trophic functioning. Estuar. Coasts 38, 1782–1796. https://doi.org/10.1007/s12237-014-9910-6.spa
dc.relation.referencesRickard, C., McLachlan, A., Kerley, G.,1994. The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Oc. Coast. Manag. 23 (3), 225–247. DOI: doi:https://doi.org/10.1016/0964-5691(94)90021-3.spa
dc.relation.referencesRutz, C., Loretto, M., Bates, A., Davidson, S., Duarte, C., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R., Ropert-Coudert, Y., Tucker, M., Wikelski, M., Cagnacci, F., 2020. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evo. 4, 1156–1159. https://doi.org/10.1038/ s41559-020-1237-z.spa
dc.relation.referencesSchlacher, T., Thomson, L., 2012. Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biol. Conserv. 147 (1), 123–132. https://doi.org/ 10.1016/j.biocon.2011.12.022.spa
dc.relation.referencesSchlacher, T., Schoeman, D., Lastra, M., Jones, A., Dugan, J., Scapini, F., McLachlan, A., 2006. Neglected ecosystems bear the brunt of change. Ethol. Ecol. Evol. 18, 349e351.spa
dc.relation.referencesSchlacher, T., Nielsen, T., Weston, M., 2013. Human recreation alters behaviour profiles of non-breeding birds on open-coast sandy shores. Estuar. Coast. Shelf Sci. 118, 31–42. https://doi.org/10.1016/j.ecss.2012.12.016.spa
dc.relation.referencesSchlacher, T., Schoeman, D., Jones, A., Dugan, J., Hubbard, D., Defeo, O., Peterson, C., Weston, M., Maslo, B., Olds, A., Scapini, F., Nel, R., Harris, L., Lucrezi, S., Lastra, M., Huijbers, C., Connolly, R., 2014. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. Jour. of Env. Manag. 144, 322–335. https://doi. org/10.1016/j.jenvman.2014.05.036.spa
dc.relation.referencesSchlacher, T.A., Jones, A.R., Dugan, J.E., Weston, M.A., Harris, L.L., Schoeman, D.S., Hubbard, D., Scapini, F., Nel, R., Lastra, M., McLachlan, A., Peterson, C.H., 2014a. Open-coast sandy beaches and coastal dunes. Chapter 5. In: Lockwood, J.L., Maslo, B. (Eds.), Coastal Conservation. Cambridge University Press, Cambridge, pp. In: 37e94.spa
dc.relation.referencesSchlacher, T.A., Lucrezi, S., Connolly, R.M., Peterson, C.H., Gilby, B.L., Maslo, B., Olds, A.D., Walker, S.J., Leon, J.X., Huijbers, C.M., Weston, M.A., Turra, A., Hyndes, G.A., Holt, R.A., Schoeman, D.S., 2016. Human threats to sandy beaches: a meta-analysis of ghost crabs illustrates global anthropogenic impacts. Estuar. Coast. and Shelf Sci. 169, 56–73.spa
dc.relation.referencesSouza Filho, J.R., Silva, I.R., Nunes, F.N., 2019. Avaliaçao ˜ qualitativa dos serviços ecossistˆemicos oferecidos pelas praias da APA Lagoa Encantada/Rio Almada, Bahia, Brasil. Caminhos de Geografia Uberlandia ˆ 20 (72), 15–32. https://doi.org/ 10.14393/RCG207241182.spa
dc.relation.referencesSouza, J.L, Silva, I.R., 2015. Avaliaçao ˜ da qualidade ambiental das praias da ilha de Itaparica, Baía de Todos os Santos, Bahia. Soc. & Nat. 27 (3), 469–484. DOI: https://doi.org/10.1590/1982-451,320,150,308.spa
dc.relation.referencesStelling-Wood, T.P., Clark, G.F., Poore, A.G.B., 2016. Responses of ghost crabs to habitat modification of urban sandy beaches. Mar. Env. Res. 116, 32–40. https://doi.org/ 10.1016/j.marenvres.2016.02.009.spa
dc.relation.referencesSteven, R., Castley, J.G., 2013. Tourism as a threat to critically endangered and endangered birds: global patterns and trends in conservation hotspots. Biodivers. Conserv. 22, 1063–1082. https://doi.org/10.1007/s10531-013-0470-z.spa
dc.relation.referencesSuciu, M., Tavares, D., Costa, L., Silva, M., Zalmon, I., 2017. Evaluation of environmental quality of sandy beaches in southeastern Brazil. Mar. Poll. Bull. 199, 133–142. https://doi.org/10.1016/j.marpolbul.2017.04.045.spa
dc.relation.referencesVeloso, V.G., Silva, E.S., Caetano, C.H.S., Cardoso, R.S., 2006. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biol. Conserv. 127, 510–515.spa
dc.relation.referencesVilar de Araujo, C.C., Melo Rosa, D., Fernandes, J.M., 2008. Densidade e distribuiçao ˜ espacial do caranguejo Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) em trˆes praias arenosas do Espírito Santo, Brasil. Biotemas 21, 73–80. https://doi. org/10.5007/2175-7925.2008v21n4p73.spa
dc.relation.referencesWickham, H., 2014. Tidy data. J. Stat. Softw. 59 (10), 1–23. https://doi.org/10.18637/ jss.v059.i10.spa
dc.relation.referencesWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., et al., 2019. Welcome to the Tidyverse. Journal of Open Source Software 4 (43), 1686. https:// doi.org/10.21105/joss.01686. Williams, A., Micallef, A., 2009. Beach Management: Principles and Practice. Earthscan Publishers, London.spa
dc.relation.referencesWilson, C., Tisdell, C., 2003. Conservation and economic benefits of wildlife-based marine tourism: sea turtles and whales as case studies. Human Dimensions of Wildlife: An International Journal 8 (1), 49–58. https://doi.org/10.1080/ 10871200390180145.spa
dc.relation.referencesWinter, P.L., Selin, S., Cerveny, L., Bricker, K., 2020. Outdoor recreation, nature-based tourism. and sustainability. Sustainability 12 (1), 81.spa
dc.relation.referencesZambrano-Monserrate, M., Ruano, M., 2019. Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land Use Policy 87,104,059.spa
dc.relation.referencesZambrano-Monserrate, M., Silva-Zambrano, C., Ruano, M., 2018. The economic value of natural protected areas in Ecuador: a case of Villamil Beach National Recreation Area. Ocean Coast. Manag. 157, 193–202. https://doi.org/10.1016/j. ocecoaman.2018.02.020.spa
dc.relation.referencesZambrano-Monserrate, M., Ruano, M., Sanchez-Alcalde, ´ L., 2020. Indirect effects of COVID-19 on the environment. Sci.Total Env. 728 (138), 813. https://doi.org/ 10.1016/j.scitotenv.2020.138813.spa
dc.relation.referencesZhang, F., Wang, X.A., Nunes, P., Ma, C., 2015. The recreational value of gold coast beaches, Australia: an application of the travel cost method. Eco. Serv. 11, 106–114. https://doi.org/10.1016/j.ecoser.2014.09.001.spa
dc.relation.referencesZielinski, S., Botero, C.M., 2020. Beach tourism in times of COVID-19 pandemic: critical issues, knowledge gaps and research opportunities. Int. J. Environ. Res. Public Health 17, 7288. https://doi.org/10.3390/ijerph17197288.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3148]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal