Show simple item record

dc.creatorArquez, Sair
dc.creatorCordero, Rubén
dc.creatorCompeán Jasso, Victor Hugo
dc.date.accessioned2021-02-23T22:27:07Z
dc.date.available2021-02-23T22:27:07Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/11323/7916
dc.description.abstractThe problem of a colour-charged point particle interacting with a four-dimensional Yang–Mills gauge theory is revisited. The radiation damping is obtained inspired in Dirac’s computation. The difficulties in the non-abelian case were solved by using an ansatz for the Liénard–Wiechert potentials already used in the literature (Ö. Sarıoğlu. Phys. Rev. D, 66, 085005 (2002). doi:10.1103/PhysRevD.66.085005) for finding solutions to the Yang–Mills equations. Three non-trivial examples of radiation damping for a non-abelian particle are discussed in detail.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCanadian Journal of Physicsspa
dc.titleRadiation damping of a Yang–Mills particle revisitedspa
dc.typearticlespa
dcterms.references1. Abraham M. Ann. Phys. (Leypzig), 315, 105 (1903).spa
dcterms.references2. Dirac P.A.M. Proc. Roy. Soc. Lond. A, 167, 148 (1938).spa
dcterms.references3. Teitelboim C. Phys. Rev. D, 1, 1572 (1970). Erratum. Phys. Phys. Rev. D, 2, 1763 (1970).spa
dcterms.references4. Bonnor W.B. Proc. R. Soc. Lond. A, 337, 591 (1974).spa
dcterms.references5. Ares de Parga G. and Mares R. Nuovo Cim. B, 113, 1469 (1998).spa
dcterms.references6. J.D. Jackson. Classical electrodynamics. 3rd ed. Wiley, New York (1999).spa
dcterms.references7. F. Rohrlich. Classical charged particles. 2nd ed. Addison Wesley, Rodwood City, California (1990).spa
dcterms.references8. Rohrlich F. Am. J. Phys. 68 (12), 1109 (2000).spa
dcterms.references9. Rohrlich F. Phys. Rev. D, 60, 084017 (1999).spa
dcterms.references10. Wong S.K. Nuovo Cim. A, 65, 689 (1970).spa
dcterms.references11. Balachandran A.P., Salomonson P., Skagerstam B.S., and Winnberg J.O. Phys. Rev. D, 15, 2308 (1977).spa
dcterms.references12. Balachandran A.P., Borchardt S., and Stern A. Phys. Rev. D, 17, 3247 (1978).spa
dcterms.references13. Arodz H. Phys. Lett. B, 116, 251 (1982).spa
dcterms.references14. Bastianelli F., Bonezzi R., Corradini O., and Latini E. J. High Energ. Phys. 1310, 098 (2013).spa
dcterms.references15. Heinz U.W. Phys. Rev. Lett. 51, 351 (1983).spa
dcterms.references16. Heinz U.W. Nucl. Phys. A, 418, 603 (1984).spa
dcterms.references17. Kelly P.F., Liu Q., Lucchesi C., and Manuel C. Phys. Rev. D, 50, 4209 (1994).spa
dcterms.references18. Gyulassy M. and Selikhov A.V. Nucl. Phys. A, 566, 133 (1994).spa
dcterms.references19. Nayak G.C. and Ravishankar V. Phys. Rev. D, 55, 6877 (1997).spa
dcterms.references20. Litim D.F. and Manuel C. Nucl. Phys. B, 562, 237 (1999).spa
dcterms.references21. Bistrovic B., Jackiw R., Li H., Nair V.P., and Pi S.Y. Phys. Rev. D, 67, 025013 (2003).spa
dcterms.references22. Arnold P.B., Moore G.D., and Yaffe L.G. Phys. Rev. D, 72, 054003 (2005).spa
dcterms.references23. Dumitru A., Nara Y., Schenke B., and Strickland M. Phys. Rev. C, 78, 024909 (2008).spa
dcterms.references24. Peralta-Ramos J. and Calzetta E. Phys. Rev. D, 86, 125024 (2012).spa
dcterms.references25. Fernandez-Melgarejo J.J., Rey S.J., and Surówka P. J. High Energ. Phys. 1702, 122 (2017).spa
dcterms.references27. Jalilian-Marian J., Jeon S., and Venugopalan R. Phys. Rev. D, 63, 036004 (2001)spa
dcterms.references28. Voronyuk V., Goloviznin V.V., Zinovjev G.M., Cassing W., Molodtsov S.V., Snigirev A.M., and Toneev V.D. Phys. Atom. Nucl. 78 (2), 312 (2015).spa
dcterms.references29. Mrowczynski S., Schenke B., and Strickland M. Phys. Rep. 682, 1 (2017).spa
dcterms.references30. Dumitru A., Miller G.A., and Venugopalan R. Phys. Rev. D, 98, 094004 (2018).spa
dcterms.references31. Bern Z., Carrasco J.J.M., and Johansson H. Phys. Rev. D, 78, 085011 (2008).spa
dcterms.references32. Goldberger W.D. and Ridgway A.K. Phys. Rev. D, 95 (12), 125010 (2017).spa
dcterms.references33. Dzhunushaliev V., Folomeev V., and Protsenko N. Int. J. Mod. Phys. D, 28 (01) 1950017 (2019).spa
dcterms.references34. Drechsler W. and Rosenblum A. Phys. Lett. B, 106, 81 (1981).spa
dcterms.references35. Kates R.E. and Rosenblum A. Phys. Rev. D, 28, 3066 (1983).spa
dcterms.references36. Trautman A. Phys. Rev. Lett. 46, 875 (1981).spa
dcterms.references37. Oh C.H., Lai C.H., and The R. Phys. Rev. D, 33, 1133 (1986).spa
dcterms.references38. A. Liénard. Champ électrique et magnétique. In: L’éclairage Électrique. Vol. 16, pp. 5–14, 53–59, 106–112 (1898)spa
dcterms.references39. Wiechert E. Ann. Phys. 309, 667 (1901).spa
dcterms.references40. Sarıoğlu Ö. Phys. Rev. D, 66, 085005 (2002).spa
dcterms.references41. Gürses M. and Sarioglu Ö. Class. Quant. Grav. 19, 4249 (2002).Erratum, Class. Quant. Grav. 20, 1413 (2003).spa
dcterms.references42. Von Laue M. Ann. Phys. 28, 436 (1909).spa
dcterms.references43. Rohrlich F. Am. J. Phys. 65, 1051 (1997).spa
dcterms.references44. Sprott J.C. Phys. Rev. E, 50, R647 (1994).spa
dcterms.references45. Sprott J.C. Am. J. Phys. 65, 537 (1997).spa
dcterms.references46. Chernicoff M., Garcia J.A., and Guijosa A. Phys. Rev. Lett. 102, 241601 (2009).spa
dc.source.urlhttps://cdnsciencepub.com/doi/abs/10.1139/cjp-2019-0389spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1139/cjp-2019-0389
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International