Mostrar el registro sencillo del ítem

dc.contributor.authorVásquez, John W.spa
dc.contributor.authorPerez-Zuñiga, Gustavospa
dc.contributor.authorSotomayor-Moriano, Javierspa
dc.contributor.authorOspino C., Adalbertospa
dc.date.accessioned2021-02-24T17:24:16Z
dc.date.available2021-02-24T17:24:16Z
dc.date.issued2021
dc.identifier.issn1099-4300spa
dc.identifier.urihttps://hdl.handle.net/11323/7920spa
dc.description.abstractIn automated plants, particularly in the petrochemical, energy, and chemical industries, the combined management of all of the incidents that can produce a catastrophic accident is required. In order to do this, an alarm management methodology can be formulated as a discrete event sequence recognition problem, in which time patterns are used to identify the safe condition of the process, especially in the start-up and shutdown stages. In this paper, a new layer of protection (a Super-Alarm), based on the diagnostic stage to industrial processes is presented. The alarms and actions of the standard operating procedures are considered to be discrete events involved in sequences; the diagnostic stage corresponds to the recognition of the situation when these sequences occur. This provides operators with pertinent information about the normal or abnormal situations induced by the flow of the alarms. Chronicles Based Alarm Management (CBAM) is the methodology used in this document to build the chronicles that will permit us to generate the Super-Alarms; in addition, a case study of the petrochemical sector using CBAM is presented in order to build one chronicle that represents the scenario of an abnormal start-up of an oil transport system. Finally, the scenario’s validation for this case is performed, showing the way in which, a Super-Alarm is generated.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceEntropyspa
dc.subjectAlarm managementspa
dc.subjectProtection layersspa
dc.subjectSafe-processspa
dc.subjectSuper-Alarmspa
dc.subjectDiagnosisspa
dc.titleSuper-alarms with diagnosis proficiency used as an additional layer of protection applied to an oil transport systemspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.mdpi.com/1099-4300/23/2/139spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.3390/e23020139spa
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.references1. Brennan, R. Toward Real-Time Distributed Intelligent Control: A Survey of Research Themes and Applications. IEEE Trans. Syst. Man Cybern. 2007, 37, 744–765. [CrossRef]spa
dc.relation.references2. Zhang, J.; Khalgui, M.; Li, Z.; Frey, G.; Mosbahi, O.; Ben Salah, H. Reconfigurable Coordination of Distributed Discrete Event Control Systems. IEEE Trans. Control. Syst. Technol. 2014, 23, 323–330. [CrossRef]spa
dc.relation.references3. Reifer, D.J. Software Failure Modes and Effects Analysis. IEEE Trans. Reliab. 1979, 28, 247–249. [CrossRef]spa
dc.relation.references4. Morel, G.; Valckenaers, P.; Faure, J.-M.; Pereira, C.E.; Diedrich, C. Manufacturing Plant Control Challenges and Issues. Control. Eng. Pract. 2007, 15, 1321–1331. [CrossRef]spa
dc.relation.references5. Rodrigo, V.; Chioua, M.; Hagglund, T.; Hollender, M. Causal Analysis for Alarm Flood Reduction. IFAC-PapersOnLine 2016, 49, 723–728. [CrossRef]spa
dc.relation.references6. Bodsberg, L.; Hokstad, P. Alarm and Shutdown Frequencies in Offshore Production. IFAC Proc. Vol. 1988, 21, 19–25. [CrossRef]spa
dc.relation.references7. Agudelo, C.; Morant Anglada, F.; Quiles Cucarella, E.; Garca Moreno, E. Secuencias De Alarmas Para detección Y diagnóstico de fallos. Rev. Colomb. Comput. 2011, 12, 31–44. (In Spanish) [CrossRef]spa
dc.relation.references8. Izadi, I.; Shah, S.L.; Shook, D.S.; Chen, T. An Introduction to Alarm Analysis and Design. IFAC Proc. Vol. 2009, 42, 645–650. [CrossRef]spa
dc.relation.references9. Gómez, C.F.A. Integracion de Tecnicas y Las Secuencias de Alarmas Para la Deteccion y el Diagnostico de Fallos; Universitat Politecnica de Valencia: Valencia, Spain, 2016. [CrossRef]spa
dc.relation.references10. Vásquez Capacho, J.W. Chronicle Based Alarm Management. Available online: https://hal.laas.fr/Tel-02059631 (accessed on 1 October 2017).spa
dc.relation.references11. Beebe, D.; Ferrer, S.; Logerot, D. The Connection of Peak Alarm Rates to Plant Incidents and What You Can Do to Minimize. Process. Saf. Prog. 2012, 32, 72–77. [CrossRef]spa
dc.relation.references12. Zhu, J.; Shu, Y.; Zhao, J.; Yang, F. A Dynamic Alarm Management Strategy for Chemical Process Transitions. J. Loss Prev. Process. Ind. 2014, 30, 207–218. [CrossRef]spa
dc.relation.references13. John, V.; Jorge, P.; Carlos, A.; Jose, J. Analysis of Alarm Management in Startups and Shutdowns for Oil Refining Processes. In Proceedings of the 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), Bogotá, Colombia, 23–25 October 2013; pp. 1–6. [CrossRef]spa
dc.relation.references14. Willey, R.J. Layer of Protection Analysis. Procedia Eng. 2014, 84, 12–22. [CrossRef]spa
dc.relation.references15. Hokstad, P.; Corneliussen, K. Loss of Safety Assessment and the IEC 61508 Standard. Reliab. Eng. Syst. Saf. 2004, 83, 111–120. [CrossRef]spa
dc.relation.references16. Ko´scielny, J.; Barty´s, M. The Requirements for a New Layer in the Industrial Safety Systems. IFAC-PapersOnLine 2015, 48, 1333–1338. [CrossRef]spa
dc.relation.references17. Sklet, S. Safety Barriers: Definition, Classification, and Performance. J. Loss Prev. Process. Ind. 2006, 19, 494–506. [CrossRef]spa
dc.relation.references18. Dowell, A.M. Layer of Protection Analysis and Inherently Safer Processes. Process. Saf. Prog. 1999, 18, 214–220. [CrossRef]spa
dc.relation.references19. Vásquez, J.; Zuñiga, C.G.P.; Moriano, J.S.; Maldonado, Y.A.M.; Ospino, A. New Concept of Safeprocess Based on a Fault Detection Methodology: Super Alarms. IFAC-PapersOnLine 2019, 52, 231–236. [CrossRef]spa
dc.relation.references20. Vásquez Capacho, J.W.; Perez Zuñiga, C.G.; Muñoz Maldonado, Y.A.; Ospino Castro, A.J. An additional layer of protection through superalarms with diagnosis capability. CT&F Cienc. Tecnol. Futuro 2020, 10, 45–65. [CrossRef]spa
dc.relation.references21. Bayoudh, M.; Travé-Massuyès, L.; Olive, X. Hybrid Systems Diagnosis by Coupling Continuous and Discrete Event Techniques. IFAC Proc. Vol. 2008, 41, 7265–7270. [CrossRef]spa
dc.relation.references22. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with ModelBased and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]spa
dc.relation.references23. Vásquez, J.; Travé-Massuyès, L.; Subias, A.; Jimenez, F.; Agudelo, C. Alarm Management Based on Diagnosis. IFAC-PapersOnLine 2016, 49, 126–131. [CrossRef]spa
dc.relation.references24. Capacho, J.V.; Subias, A.; Travé-Massuyès, L.; Jimenez, F. Alarm Management via Temporal Pattern Learning. Eng. Appl. Artif. Intell. 2017, 65, 506–516. [CrossRef]spa
dc.relation.references25. Vásquez, J.W.; Travé-Massuyès, L.; Subias, A.; Jiménez, F.; Agudelo, C. Chronicle Based Alarm Management in Startup and Shutdown stages. In Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, 31 August– 3 September 2015; pp. 277–280. Available online: https://hal.laas.fr/Hal-01847469 (accessed on 1 October 2017).spa
dc.relation.references26. Cordier, M.-O.; Dousson, C. Alarm Driven Monitoring Based on Chronicles. IFAC Proc. Vol. 2000, 33, 291–296. [CrossRef]spa
dc.relation.references27. Dousson, C. Suivi d’évolutions Et Reconnaissance De Chroniques. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 1994. Available online: http://www.theses.fr/1994TOU30264 (accessed on 1 October 2017).spa
dc.relation.references28. Pons, R.; Subias, A.; Travé-Massuyès, L. Iterative Hybrid Causal Model Based Diagnosis: Application to Automotive Embedded Functions. Eng. Appl. Artif. Intell. 2015, 37, 319–335. [CrossRef]spa
dc.relation.references29. Vásquez, J.W.; Perez-Zuñiga, G.; Muñoz, Y.; Ospino, A. Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. J. Comput. Sci. 2020, 44, 101162. [CrossRef]spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3156]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal