Show simple item record

dc.creatorVásquez, John W.
dc.creatorPerez-Zuñiga, Gustavo
dc.creatorSotomayor-Moriano, Javier
dc.creatorOspino, Adalberto
dc.description.abstractIn automated plants, particularly in the petrochemical, energy, and chemical industries, the combined management of all of the incidents that can produce a catastrophic accident is required. In order to do this, an alarm management methodology can be formulated as a discrete event sequence recognition problem, in which time patterns are used to identify the safe condition of the process, especially in the start-up and shutdown stages. In this paper, a new layer of protection (a Super-Alarm), based on the diagnostic stage to industrial processes is presented. The alarms and actions of the standard operating procedures are considered to be discrete events involved in sequences; the diagnostic stage corresponds to the recognition of the situation when these sequences occur. This provides operators with pertinent information about the normal or abnormal situations induced by the flow of the alarms. Chronicles Based Alarm Management (CBAM) is the methodology used in this document to build the chronicles that will permit us to generate the Super-Alarms; in addition, a case study of the petrochemical sector using CBAM is presented in order to build one chronicle that represents the scenario of an abnormal start-up of an oil transport system. Finally, the scenario’s validation for this case is performed, showing the way in which, a Super-Alarm is
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.subjectAlarm managementspa
dc.subjectProtection layersspa
dc.titleSuper-alarms with diagnosis proficiency used as an additional layer of protection applied to an oil transport systemspa
dcterms.references1. Brennan, R. Toward Real-Time Distributed Intelligent Control: A Survey of Research Themes and Applications. IEEE Trans. Syst. Man Cybern. 2007, 37, 744–765. [CrossRef]spa
dcterms.references2. Zhang, J.; Khalgui, M.; Li, Z.; Frey, G.; Mosbahi, O.; Ben Salah, H. Reconfigurable Coordination of Distributed Discrete Event Control Systems. IEEE Trans. Control. Syst. Technol. 2014, 23, 323–330. [CrossRef]spa
dcterms.references3. Reifer, D.J. Software Failure Modes and Effects Analysis. IEEE Trans. Reliab. 1979, 28, 247–249. [CrossRef]spa
dcterms.references4. Morel, G.; Valckenaers, P.; Faure, J.-M.; Pereira, C.E.; Diedrich, C. Manufacturing Plant Control Challenges and Issues. Control. Eng. Pract. 2007, 15, 1321–1331. [CrossRef]spa
dcterms.references5. Rodrigo, V.; Chioua, M.; Hagglund, T.; Hollender, M. Causal Analysis for Alarm Flood Reduction. IFAC-PapersOnLine 2016, 49, 723–728. [CrossRef]spa
dcterms.references6. Bodsberg, L.; Hokstad, P. Alarm and Shutdown Frequencies in Offshore Production. IFAC Proc. Vol. 1988, 21, 19–25. [CrossRef]spa
dcterms.references7. Agudelo, C.; Morant Anglada, F.; Quiles Cucarella, E.; Garca Moreno, E. Secuencias De Alarmas Para detección Y diagnóstico de fallos. Rev. Colomb. Comput. 2011, 12, 31–44. (In Spanish) [CrossRef]spa
dcterms.references8. Izadi, I.; Shah, S.L.; Shook, D.S.; Chen, T. An Introduction to Alarm Analysis and Design. IFAC Proc. Vol. 2009, 42, 645–650. [CrossRef]spa
dcterms.references9. Gómez, C.F.A. Integracion de Tecnicas y Las Secuencias de Alarmas Para la Deteccion y el Diagnostico de Fallos; Universitat Politecnica de Valencia: Valencia, Spain, 2016. [CrossRef]spa
dcterms.references10. Vásquez Capacho, J.W. Chronicle Based Alarm Management. Available online: (accessed on 1 October 2017).spa
dcterms.references11. Beebe, D.; Ferrer, S.; Logerot, D. The Connection of Peak Alarm Rates to Plant Incidents and What You Can Do to Minimize. Process. Saf. Prog. 2012, 32, 72–77. [CrossRef]spa
dcterms.references12. Zhu, J.; Shu, Y.; Zhao, J.; Yang, F. A Dynamic Alarm Management Strategy for Chemical Process Transitions. J. Loss Prev. Process. Ind. 2014, 30, 207–218. [CrossRef]spa
dcterms.references13. John, V.; Jorge, P.; Carlos, A.; Jose, J. Analysis of Alarm Management in Startups and Shutdowns for Oil Refining Processes. In Proceedings of the 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), Bogotá, Colombia, 23–25 October 2013; pp. 1–6. [CrossRef]spa
dcterms.references14. Willey, R.J. Layer of Protection Analysis. Procedia Eng. 2014, 84, 12–22. [CrossRef]spa
dcterms.references15. Hokstad, P.; Corneliussen, K. Loss of Safety Assessment and the IEC 61508 Standard. Reliab. Eng. Syst. Saf. 2004, 83, 111–120. [CrossRef]spa
dcterms.references16. Ko´scielny, J.; Barty´s, M. The Requirements for a New Layer in the Industrial Safety Systems. IFAC-PapersOnLine 2015, 48, 1333–1338. [CrossRef]spa
dcterms.references17. Sklet, S. Safety Barriers: Definition, Classification, and Performance. J. Loss Prev. Process. Ind. 2006, 19, 494–506. [CrossRef]spa
dcterms.references18. Dowell, A.M. Layer of Protection Analysis and Inherently Safer Processes. Process. Saf. Prog. 1999, 18, 214–220. [CrossRef]spa
dcterms.references19. Vásquez, J.; Zuñiga, C.G.P.; Moriano, J.S.; Maldonado, Y.A.M.; Ospino, A. New Concept of Safeprocess Based on a Fault Detection Methodology: Super Alarms. IFAC-PapersOnLine 2019, 52, 231–236. [CrossRef]spa
dcterms.references20. Vásquez Capacho, J.W.; Perez Zuñiga, C.G.; Muñoz Maldonado, Y.A.; Ospino Castro, A.J. An additional layer of protection through superalarms with diagnosis capability. CT&F Cienc. Tecnol. Futuro 2020, 10, 45–65. [CrossRef]spa
dcterms.references21. Bayoudh, M.; Travé-Massuyès, L.; Olive, X. Hybrid Systems Diagnosis by Coupling Continuous and Discrete Event Techniques. IFAC Proc. Vol. 2008, 41, 7265–7270. [CrossRef]spa
dcterms.references22. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with ModelBased and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]spa
dcterms.references23. Vásquez, J.; Travé-Massuyès, L.; Subias, A.; Jimenez, F.; Agudelo, C. Alarm Management Based on Diagnosis. IFAC-PapersOnLine 2016, 49, 126–131. [CrossRef]spa
dcterms.references24. Capacho, J.V.; Subias, A.; Travé-Massuyès, L.; Jimenez, F. Alarm Management via Temporal Pattern Learning. Eng. Appl. Artif. Intell. 2017, 65, 506–516. [CrossRef]spa
dcterms.references25. Vásquez, J.W.; Travé-Massuyès, L.; Subias, A.; Jiménez, F.; Agudelo, C. Chronicle Based Alarm Management in Startup and Shutdown stages. In Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, 31 August– 3 September 2015; pp. 277–280. Available online: (accessed on 1 October 2017).spa
dcterms.references26. Cordier, M.-O.; Dousson, C. Alarm Driven Monitoring Based on Chronicles. IFAC Proc. Vol. 2000, 33, 291–296. [CrossRef]spa
dcterms.references27. Dousson, C. Suivi d’évolutions Et Reconnaissance De Chroniques. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 1994. Available online: (accessed on 1 October 2017).spa
dcterms.references28. Pons, R.; Subias, A.; Travé-Massuyès, L. Iterative Hybrid Causal Model Based Diagnosis: Application to Automotive Embedded Functions. Eng. Appl. Artif. Intell. 2015, 37, 319–335. [CrossRef]spa
dcterms.references29. Vásquez, J.W.; Perez-Zuñiga, G.; Muñoz, Y.; Ospino, A. Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. J. Comput. Sci. 2020, 44, 101162. [CrossRef]spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal