Show simple item record

dc.creatorSilva, Jesús
dc.creatorEcheverría, Ana María
dc.creatorVarela Izquierdo, Noel
dc.creatorPineda, Omar
dc.description.abstractThe constant technological innovation in devices for the acquisition of digital images such as: energy-efficient and high-pixel sensors, memories with greater storage capacity and processors capable of sampling digital signals more quickly, have made it possible to digitize with greater reliability real life scenes in an instant of time, making it possible to analyze and interpret different physical phenomena [1][2][3] such as fractures in materials, evasion of obstacles, weather conditions, injury detection, among others, giving rise to a new line of research called Artificial Vision (AV) focused on generating algorithms to improve image quality, segment characteristics of interest and eventually recognize patterns, in order to make more efficient image processing for the solution of problems in robotics, automation, security, medicine, veterinary, and others. The research aims to develop a database of thermographic images of pregnant and non-pregnant sheep, providing a tool for specialists in the area of computer intelligence and artificial
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceIOP Conf. Series: Materials Science and Engineeringspa
dc.subjectVisualization of the heatspa
dc.subjectZone of the animalspa
dc.titleThermographic imaging for use in artificial intelligence and vision algorithmsspa
dcterms.references[1] Chernov V., Alander J. and Bochko V. 2015 Integer-based accurate conversion between RGB and HSV color spaces Computers & Electrical Engineering 46 328-337spa
dcterms.references[2] Metzner M., Sauter-Louis C., Seemueller A., Petzl W. and Zerbe H. 2015 Infrared thermography of the udder after experimentally induced Escherichia coli mastitis in cows The Veterinary Journal 204 360-362spa
dcterms.references[3] Systems FLIR AB. 2011 Guía de termografía para mantenimiento predictivo Guía informativa del uso de cámaras termográficas en aplicaciones industriales FLIRspa
dcterms.references[4] McManus C., Tanure C. B., Peripolli V., Seixas L., Fischer V., Gabbi A. M., Menegassi S. R., Stumpf M. T., Kolling G. J., Dias E. and Costa J. B. G. 2016 Infrared thermography in animal production: An overview Computers and Electronics in Agriculture 123 10-16spa
dcterms.references[5] Oliveira J. V. P., Coelho A. L. F., Silva L. C. C., Viana L. A., Pinto A. C. V., Pinto F. A. C. and Oliveira Filho D. 2020 Using image pre-mapping for applications of monitoring electrical switchboards Automation in Construction 112 103091spa
dcterms.references[6] Viloria A. and Gaitan-Angulo M. 2016 Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company Indian Journal Of Science And Technology 9spa
dcterms.references[7] Wei C., Liu Y., Bie Y., Wang S., Wu Y., Wang T. and Yin K. 2020 In Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control (Singapore: Springer) The Fault Diagnosis of Infrared Bushing Images Based on Infrared Thermography 803-812spa
dcterms.references[8] Cárdenas Quiroga E. A., Morales Martin L. Y. and Ussa Caycedo A. 2015 La estereoscopia, métodos y aplicaciones en diferentes áreas del conocimiento Revista Científica. General José María Córdova, Escuela Militar de Cadetes General José María Córdova 13spa
dcterms.references[9] Yang R., Du B., Duan P., He Y., Wang H., He Y. and Zhang K. 2019 Electromagnetic Induction Heating and Image Fusion of Silicon Photovoltaic Cell Electro-Thermography and Electroluminescence IEEE Transactions on Industrial Informaticsspa
dcterms.references[10] Rizkin B. A., Popovich K. and Hartman R. L. 2019 Artificial Neural Network control of thermoelectrically-cooled microfluidics using computer vision based on IR thermography Computers & Chemical Engineering 121 584-593spa
dcterms.references[11] Bhatia Y., Rai R., Gupta V., Aggarwal N. and Akula A. 2019 Convolutional neural networks-based potholes detection using thermal imaging Journal of King Saud University-Computer and Information Sciencesspa
dcterms.references[12] Babao R. P., Bianzon F., Co M. L., Cruz M. D., Corales N. C., Flores J. D. and Baldelomar E. L. 2017 In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (IEEE) Integration of visual and thermographic images in an artificial neural network for object classification 1-5 Decemberspa
dcterms.references[13] Ward S., Hensler J., Alsalam B. and Gonzalez L. F. 2016 In 2016 IEEE Aerospace Conference (IEEE) Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision 1-8 Marchspa
dcterms.references[14] Byrne D. T., Berry D. P., Esmonde H., Govern Mc F., Creighton P. and McHugh N. 2019 Infrared thermography as a tool to detect hoof lesions in sheep Translational Animal Science 3 577-588spa
dcterms.references[15] Viloria A. and Gaitan-Angulo M. 2016 Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company Indian Journal Of Science And Technology 9spa
dcterms.references[16] Cannas S., Palestrini C., Canali E., Cozzi B., Ferri N., Heinzl E. and Dalla Costa E. 2018 Thermography as a Non-Invasive Measure of Stress and Fear of Humans in Sheep Animals 8 146spa
dcterms.references[17] Seixas L., Melo de C. B., Tanure C. B., Peripolli V. and McManus C. 2017 Heat tolerance in Brazilian hair sheep Asian-Australasian journal of animal sciences 30 593spa
dcterms.references[18] Seixas L., Melo de C. B., Menezes A. M., Ramos A. F., Paludo G. R., Peripolli V. and McManus C. 2017 Study on environmental indices and heat tolerance tests in hair sheep Tropical animal health and production 49 975-982spa
dcterms.references[19] Sanchez L., Vásquez C. and Viloria A. 2018 In International Conference on Data Mining and Big data (Cham: Springer) Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector 759-766 Junespa
dcterms.references[20] Gowan Mc N. E., Scantlebury D. M., Cowan E., Burch K. J., Maule A. G. and Marks N. J. 2020 Dietary effects on pelage emissivity in mammals: Implications for infrared thermography Journal of Thermal Biology 102516spa

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal