Mostrar el registro sencillo del ítem

dc.contributor.authorFuentes, Luisspa
dc.contributor.authorTaborda, Katherinespa
dc.contributor.authorHu, Xiaodispa
dc.contributor.authorHorak, Emilespa
dc.contributor.authorBai, Taospa
dc.contributor.authorWalubita, Lubinda Fspa
dc.date.accessioned2021-03-10T19:33:46Z
dc.date.available2021-03-10T19:33:46Z
dc.date.issued2020-10-09
dc.identifier.urihttps://hdl.handle.net/11323/7987spa
dc.description.abstractPresently, most of the road agencies use Non-Destructive (NDT) tools to help them prioritise pavement maintenance and rehabilitation (M&R) activities at the network level, thus optimising the limited budgetary resources. One of the most widely used NDT techniques for pavement structural evaluations, at the network level assessment, is the Falling Weight Deflectometer (FWD). Using a database comprising of a wide array of typical layer moduli and thicknesses of traditional flexible pavements, that were generated based on multiple Monte Carlo numerical simulations, as a reference datum, this study successfully developed probabilistic models that allow for analysing the condition of a flexible pavement, at the network level, from FWD surface deflection data, namely the Deflection Bowl Parameters (DBPs), to identify which layers of the pavement structure present a probability of structural failure or damage.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoeng
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universalspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/spa
dc.sourceInternational Journal of Pavement Engineeringspa
dc.subjectfalling weight deflectometerspa
dc.subjectdeflection bowl parametersspa
dc.subjectlogistic model regressionspa
dc.subjectpavement rehabilitationspa
dc.subjectnon destructive testingspa
dc.titleA probabilistic approach to detect structural problems in flexible pavement sections at network level assessmentspa
dc.typeArtículo de revistaspa
dc.source.urlhttps://www.tandfonline.com/doi/abs/10.1080/10298436.2020.1828586spa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.doihttps://doi.org/10.1080/10298436.2020.1828586spa
dc.date.embargoEnd2021-11-09
dc.identifier.instnameCorporación Universidad de la Costaspa
dc.identifier.reponameREDICUC - Repositorio CUCspa
dc.identifier.repourlhttps://repositorio.cuc.edu.co/spa
dc.relation.referencesAASHTO, 1993. AASHTO guide for design of pavement structures 1993. Washington, DC: American 7 Association of State Highway and Transportation Officials.spa
dc.relation.referencesAbudinen, D., Fuentes, L., and Carvajal, J., 2017. Travel quality assessment of Urban Roads based on International roughness Index: case study in Colombia. Transportation Research Record: Journal of the Transportation Research Board, 2612 (1), 1–10.spa
dc.relation.referencesAdams, J. and Kim, R., 2014. Mean profile depth analysis of field and laboratory traffic-loaded chip seal surface treatments. International Journal of Pavement Engineering, 15 (7), 645–656.spa
dc.relation.referencesAlkasawneh, W., 2007. Backcalculation of pavement moduli using genetic algorithms. Ph.D. thesis, Department of Civil Engineering, University of Akron.spa
dc.relation.referencesAnderson, D., 1977. The design of asphalt concrete overlays for flexible highway pavements. Berkeley: Departament of civil Engineering. University of California.spa
dc.relation.referencesDehlen, G., 1961. The use of the Benkelman beam for the measurement of deflections and curvatures of a road surface between dual wheels. Council for Scientific and Industrial Research (CSIR) special report, R.2. Pretoria.spa
dc.relation.referencesDehlen, G., 1962. Flexure of a road surfacing, its relation to fatigue cracking, and factors determining its severity. HRB, Highway Research Board Boletin no. 321.spa
dc.relation.referencesFHWA, 2016. Pavement structural evaluation at the network level: final report. Federal Highway Administration. Publication no. FHWAHRT15/074. Fuentes, L., et al., 2012. Determination of pavement macrotexture limit for use in international friction index model. Transportation Research Record: Journal of the Transportation Research Board, 2306 (1), 138–143.spa
dc.relation.referencesFuentes, L., et al., 2019. Modelling pavement serviceability of urban roads using deterministic and probabilistic approaches. International Journal of Pavement Engineering. doi:10.1080/10298436.2019.1577422.spa
dc.relation.referencesFuentes, L. and Gunaratne, M., 2010. Evaluation of the Speed Constant and Its Effect on the Calibration of Friction-Measuring Devices. Transportation Research Record: Journal of the Transportation Research Board, 2155. Washington, DC: Transportation Research Board of the National Academies, 134–144.spa
dc.relation.referencesFuentes, L. and Gunaratne, M., 2011. Revised Methodology for Computing International Friction Index Transportation Research Record: Journal of the Transportation Research Board, 2227. Washington, DC: Transportation Research Board of the National Academies, 129–137.spa
dc.relation.referencesFuentes, L., Gunaratne, M., and Hess, D., 2010. Evaluation of the effect of pavement roughness on skid resistance. Journal of Transportation Engineering, 136 (7), 640–653.spa
dc.relation.referencesGarg, N. and Thompson, M., 1997. Mechanistic-empirical evaluation of the Mn/road low volume road test sections. ProQuest dissertations. Gopalakrishna, K. and Kumar, S., 2010. Finite element based adaptive neuro-fuzzy inference technique for parameter identification of multi-layered transportation structures. Transport, 25 (1), 58–65.spa
dc.relation.referencesHarrison, R., 2010. Introduction to Monte Carlo simulation. AIP Conference Proceedings, 1204, 17–21.spa
dc.relation.referencesHoffman, M. and Thompson, M., 1981. Mechanistic interpretation of nondestructive pavement testing deflections. ProQuest dissertations.spa
dc.relation.referencesINTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 13 Horak, E., 1987a. The use of deflection basin measurments in the mechaninistic analysis of flexible pavements. Sixth international conference on the structural design of asphalt pavements, vol. 1. University of Michigan.spa
dc.relation.referencesHorak, E., 1987b. Aspects of deflection basin parameters used in a mechanistic rehabilitation design procedure for flexible pavements in South Africa. PhD thesis. Pretoria: Department of Civil Engineering, University of Pretoria.spa
dc.relation.referencesHorak, E., 2008. Benchmarking the structural condition of flexible pavements with deflection bowl parameters. Journal of the South African Institution of Civil Engineers, 50 (2), 2–9.spa
dc.relation.referencesHorak, E. and Emery, S., 2006. Falling weight deflectometer bowl parameters as analysis tool for pavement structural evaluations. In: Proceedings of 22nd ARRB conference. Canberra.spa
dc.relation.referencesHorak, E., Emery, S., and Maina, J., 2015a. Review of falling weight deflectometer deflection benchmark analysis on roads and airfields. In: 11th conference on asphalt pavements for Southern Africa: CAPSA15, 16–19 August 2015, Sun City.spa
dc.relation.referencesHorak, E., Hefer, A., and Maina, J., 2015b. Modified structural number determined from falling weight deflectometer bowl parameters and its porposed use ina Benchmark methodology. Journal of Traffic and Transportation Engineering, 3. doi:10.17265/2328-2142/2015.04.000.spa
dc.relation.referencesHosmer, D., Lemeshow, S., and Sturdivant, R., 2013. Applied logistic regression. New York: Wiley. Incorporated.spa
dc.relation.referencesHossain, M. and Zaniewski, J., 1991. Characterization of falling weight deflectometer deflection basin. Transportation Research Record: Journal of the Transportation Research Board, 1293. Washington, DC: Transportation Research Board of the National Academies, 1 – 11.spa
dc.relation.referencesHu, X., et al., 2010. Proposed loading waveforms and loading time equations for mechanistic-empirical pavement design and analysis. Journal of Transportation Engineering, 136 (6), 518–527.spa
dc.relation.referencesINVIAS, 2018. Especificaciones generales de construcción de carreteras y normas de ensayo para materiales de carreteras. Insituto Nacional de Vias Ministerio de Transporte de la República de Colombia.spa
dc.relation.referencesJoubert, F., 1992. Structural Classification of granular base pavement using measured deflection bowl parameters. ProQuest dissertations. Rand Afrikaans University.spa
dc.relation.referencesKennedy, C. and Lister, N., 1978. Deflection and pavement performance: the experimental evidence. TRRL Laboratory Report no. 833. Great Britain.spa
dc.relation.referencesKilareski, W. and Anani, B., 1982. Evaluation of in situ moduli and pavement life from deflection basins. Proceedings of the Fifth International Conference on the Structural Design of Asphalt Pavements Held Deflt University of Technology, 1 (2), 349-366.spa
dc.relation.referencesKim, Y., Ranjithan, S., Troxler, J., and Xu, B. 2000. Assessing pavement layer condition using deflection data. Final Report, NCHRP Project 10–48. North Carolina State University, Raleigh.spa
dc.relation.referencesKim, R. and Park, H., 2002. Use of falling weight deflectometer multi-load level data for pavement strength estimation. ProQuest dissertations.spa
dc.relation.referencesMaree, J. and Bellekens, R., 1991. The effect of asphalt overlays on the resilient deflection bowl response of typical pavement structures. Research report RP 90/102 for the Department of Transport. Chief Directorate National Roads, Pretoria, 1991.spa
dc.relation.referencesPencina, M. and D’Agostino, R., 2015. Evaluating discrimination of Risk Prediction models. JAMA The Journal of the American Medical Association, 314 (10), 1063–1064. doi:10.1001/jama.2015.11082.spa
dc.relation.referencesRabbi, M. and Mishra, D., 2019. Using FWD deflection basin parameters for network-level assessment of flexible pavements. International Journal of Pavement Engineering, 1–15. doi:10.1080/10298436.2019. 1580366.spa
dc.relation.referencesRohde, G. and Van Wijk, A., 1996. A mechanistic procedure to determine basin parameter criteria. Petroria: Southern African Transportation Conference.spa
dc.relation.referencesSaleh, M., 2015a. Multi-scale criteria for structural capacity evaluation of flexible pavements at network level. In: Transportation research board 94th annual meeting for both presentation and publications.spa
dc.relation.referencesSaleh, M., 2015b. Utilisation of the deflectograph data to evaluate pavement structural condition of the highway network. Road Materials and Pavement Design, 17 (1), 136–152.spa
dc.relation.referencesSaleh, M., 2016. A mechanistic empirical approach for the evaluation of the structural capacity and remaining service life of flexible pavements at the network level. Canadian Journal of Civil Engineering, 43, 749– 758. doi:10.1139/cjce-2016-0060.spa
dc.relation.referencesShahin, M., 2005. Pavement management for airports, roads and parking lots (2nd ed.). New York, NY: Springer.spa
dc.relation.referencesSolanki, U., Gundalia, P., and Barasara, M., 2014. A review on structural evaluation of flexible pavements using falling weight deflectometer. Trends in Transport Engineering and Applications, 2 (1), 1–10.spa
dc.relation.referencesStubstad, R. and Connor, B., 1983. Use of the falling weight deflectometer to predict damage potential on Alaskan highways during spring thaw.spa
dc.relation.referencesTransportation Research Record: Journal of the Transportation Research Board, 930. Washington, DC: Transportation Research Board of the National Academies, 46-51.spa
dc.relation.referencesTarefder, R. and Mesbah, A., 2014. Modeling of the FWD deflection basin to evaluate airport pavements. International Journal of Geomechanics, 14 (2), 205–213.spa
dc.relation.referencesTeam, R., 2019. RStudio: integrated development for R. RStudio. Obtenido de http://www.rstudio.com/.spa
dc.relation.referencesTerzi, S., et al., 2012. Backcalculation of pavement layer thickness using data mining. Neural Computing and Applications, 23 (5), 1369–1379. doi:10.1007/s00521-012-1083-2.spa
dc.relation.referencesTutumluer, E., 2015. Development of improved pavement rehabilitation procedures based. NEXTRANS Project No. 094IY04.spa
dc.relation.referencesVaswani, N., 1971. Method for separately evaluating structural performance of subgrades and overlaying flexible pavements. HRB, Highway Research Record No.362.spa
dc.relation.referencesVrtis, M., 2017. Investigation of deflection basin to identify structural distresses within flexible pavements. ProQuest dissertations.spa
dc.relation.referencesWalubita, L.F., et al., 2012. Texas flexible pavements and overlays: year 1 report, test sections, data collection, analyses, and data storage system (No. FHWA/TX-12/0-6658-1). Texas Transportation Institute (TTI). National Technical Information Service Alexandria, Virginia 22312.spa
dc.relation.referencesWalubita, L.F., et al., 2017. Texas flexible pavements and overlays: year 5 report-complete data documentation (No. FHWA/TX-15/0-6658-3).spa
dc.relation.referencesTexas A&M Transportation Institute (TTI). National Technical Information Service Alexandria, Virginia 22312.spa
dc.relation.referencesWalubita, L.F., Liu, W., and Scullion, T., 2010. Texas perpetual pavements: experience overview and the way forward (No. FHWA/TX-10/0-4822- 3). College Station, TX: Texas Transportation Institute (TTI).spa
dc.relation.referencesWang, Y. and Liu, Q., 2006. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships. Fisheries Research, 77 (2), 220–225.spa
dc.relation.referencesWhitcomb, W., 1982. Surface deflections and pavement evaluation equipment and analysis techniques. Transportation Engineering Report 82-4. Cornwallis, OR: Oregon State University.spa
dc.relation.referencesXu, B., Ranji Ranjithan, S., and Kim, R., 2002. New relationships between falling weight deflectometer deflections and asphalt pavement layer condition indicators. Transportation Research Record: Journal of the Transportation Research Board, 1806 (1), 46–56.spa
dc.relation.referencesZheng, Y., Zhang, P., and Liu, H., 2019. Correlation between pavement temperature and deflection basin form factors of asphalt pavement. International Journal of Pavement Engineering, 20 (8), 874–883. doi:10.1080/10298436.2017.1356172.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_f1cfspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos científicos [3148]
    Artículos de investigación publicados por miembros de la comunidad universitaria.

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal