Show simple item record

dc.creatorMoreno-Ríos, Andrea L.
dc.creatorTejeda-Benitez, Lesly
dc.creatorBustillo Lecompte, Ciro Fernando
dc.date.accessioned2021-03-12T17:19:32Z
dc.date.available2021-03-12T17:19:32Z
dc.date.issued2021
dc.identifier.issn1674-9871
dc.identifier.urihttps://hdl.handle.net/11323/7995
dc.description.abstractAir pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These particles are conditioned to the aerodynamic diameter and thus classified as coarse (2.5–10 μm), fine (0.1–2.5 μm), and ultrafine (<0.1 μm), where the degree of toxicity becomes greater for smaller particles. These particles can get into the lungs and translocate into vital organs due to their size, causing significant human health consequences. Besides, PM pollutants have been linked to respiratory conditions, genotoxic, mutagenic, and carcinogenic activity in human beings. This paper presents an overview of emission sources, physicochemical characteristics, collection and measurement methodologies, toxicity, and existing control mechanisms for ultrafine particles (UFPs) in the last fifteen years.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceGeoscience Frontiersspa
dc.subjectParticulate matterspa
dc.subjectUltrafine particlesspa
dc.subjectAir pollutionspa
dc.subjectToxicityspa
dc.subjectMeasurement methodologiesspa
dc.titleSources, characteristics, toxicity, and control of ultrafine particles: an overviewspa
dc.typearticlespa
dcterms.referencesAbbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D., Garçon, G., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–475. https://doi.org/10.1007/s10311017-0697-0.spa
dcterms.referencesAbdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25 (1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.spa
dcterms.referencesAbramesko, V., Tartakovsky, L., 2017. Ultrafine particle air pollution inside dieselpropelled passenger trains. Environ. Pollut. 226, 288–296. https://doi.org/10.1016/j. envpol.2017.03.072.spa
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075.spa
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Braga, M., Rolim, S.B.A., Silva, L.F.O., Beddows, D.C.S., Harrison, R.M., Querol, X., 2019. Cluster analysis of urban ultrafine particles size distributions. Atmos. Pollut. Res. 10 (1), 45–52. https://doi.org/10.1016/j. apr.2018.06.006.spa
dcterms.referencesAllen, J.L., Oberdörster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M., Cory-Slechta, D.A., 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59, 140–154. https://doi.org/10.1016/j.neuro.2015.12.014.spa
dcterms.referencesAzarmi, F., Kumar, P., 2016. Ambient exposure to coarse and fine particle emissions from building demolition. Atmos. Environ. 137, 62–79. https://doi.org/10.1016/j. atmosenv.2016.04.029.spa
dcterms.referencesAzarmi, F., Kumar, P., Mulheron, M., 2014. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J. Hazard. Mater. 279, 268–279. https://doi.org/10.1016/j.jhazmat.2014.07.003.spa
dcterms.referencesAzarmi, F., Kumar, P., Marsh, D., Fuller, G., 2016. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environ. Sci.: Process. Impacts 18 (2), 208–221. https://doi.org/10.1039/c5em00549c.spa
dcterms.referencesBadran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Guidice, J.M.L., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440. https://doi.org/10.1016/j.chemosphere.2019.125440.spa
dcterms.referencesBhargava, A., Tamrakar, S., Aglawe, A., Lad, H., Kumar, R.S., Kumar, D., Tiwari, R., Chaudhury, K., Yu, I., Kumar, P., 2018. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage. Environ. Pollut. 234, 406–419. https://doi.org/10.1016/j.envpol.2017.11.093.spa
dcterms.referencesBhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., Gupta, P.K., Rahman, A., Chaudhury, K., Tiwari, R., Goryacheva, I.Y., Mishra, P.K., 2019. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ. Pollut. 252, 39–50. https://doi.org/10.1016/j.envpol.2019.05.065.spa
dcterms.referencesBillet, S., Landkocz, Y., Martin, P.J., Verdin, A., Ledoux, F., Lepers, C., André, V., Cazier, F., Sichel, F., Shirali, P., Gosset, P., Courcot, D., 2018. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 71, 168–178. https://doi.org/10.1016/j. jes.2018.04.022.spa
dcterms.referencesBliss, B., Tran, K.I., Sioutas, C., Campbell, A., 2018. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors. Environ. Res. 161, 314–320. https://doi.org/10.1016/j.envres.2017.11.019.spa
dcterms.referencesBourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634–642. https://doi.org/10.1016/j. acvd.2017.05.003.spa
dcterms.referencesBriffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9), e04691. https://doi.org/10.1016/j. heliyon.2020.e04691.spa
dcterms.referencesBuiarelli, F., Di Filippo, P., Massimi, L., Pomata, D., Riccardi, C., Simonetti, G., Sonego, E., 2019. Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmos. Pollut. Res. 10 (5), 1685–1690. https://doi.org/10.1016/j.apr.2019.06.009.spa
dcterms.referencesBuonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31 (11), 2253–2262. https://doi.org/10.1016/j.wasman.2011.06.017.spa
dcterms.referencesBurtscher, H., Schüepp, K., 2012. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 13 (2), 89–94. https://doi.org/10.1016/j. prrv.2011.07.004.spa
dcterms.referencesBuzea, C., Pacheco, I., 2019. 28 - Toxicity of nanoparticles. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S. (Eds.), Nanotechnology in Eco-efficient Construction. Woodhead Publishing Series in Civil and Structural Engineering, Cambridge, pp. 705–754 https://doi.org/10.1016/b978-0-08-1026410.00028-1.spa
dcterms.referencesBuzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71. https://doi.org/10.1116/1.2815690.spa
dcterms.referencesBzdek, B.R., Pennington, M.R., Johnston, M.V., 2012. Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci. 52, 109–120. https://doi.org/ 10.1016/j.jaerosci.2012.05.001.spa
dcterms.referencesCastro-Rodriguez, J.A., Forno, E., Rodriguez-Martinez, C.E., Celedón, J.C., 2016. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. In Practice 4 (6), 1111–1122. https://doi.org/10.1016/j.jaip.2016.05.003.spa
dcterms.referencesCervellati, F., Benedusi, M., Manarini, F., Woodby, B., Russo, M., Valacchi, G., Pietrogrande, M.C., 2020. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240, 124746. https://doi.org/ 10.1016/j.chemosphere.2019.124746.spa
dcterms.referencesChen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., Chen, C., 2016. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA), General Subjects 1860 (12), 2844–2855. https://doi.org/10.1016/j. bbagen.2016.03.019.spa
dcterms.referencesChen, C., Zhao, Y., Zhang, Y., Zhao, B., 2017. Source strength of ultrafine and fine particle due to Chinese cooking. Procedia Eng. 205, 2231–2237. https://doi.org/10.1016/j. proeng.2017.10.062.spa
dcterms.referencesChen, Q.Y., DesMarais, T., Costa, M., 2019. Metals and mechanisms of carcinogénesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554. https://10.1146/annurev-pharmtox010818-021031.spa
dcterms.referencesChen, X.C., Cao, J.J., Ward, T.J., Tian, L.W., Ning, Z., Kumar, N.G., Aquilina, N.J., Lam, S.H.Y., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ 742, 140501. https://doi.org/10.1016/j.scitotenv.2020.140501.spa
dcterms.referencesCheng, Z., Liang, X., Liang, S., Yin, N., Faiola, F., 2020. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J. Environ. Sci 87, 194–204. https://doi.org/10.1016/j.jes.2019.06.016.spa
dcterms.referencesChu, B., Matti Kerminen, V., Bianchi, F., Yan, C., Petäjä, T., Kulmala, M., 2019. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19 (1), 115–138. https://doi.org/ 10.5194/acp-19-115-2019.spa
dcterms.referencesChung, M.C., Tsai, M.H., Que, D.E., Bongo, S.J., Hsu, W.L., Tayo, L.L., Lin, Y.H., Lin, S.L., Gou, Y.Y., Hsu, Y.C., Hou, W.C., Huang, K.L., Chao, H.R., 2019. Fine particulate matterinduced toxic effects in an animal model of caenorhabditis elegans. Aerosol Air Qual. Res. 19 (5), 1068–1078. https://doi.org/10.4209/aaqr.2019.03.0127.spa
dcterms.referencesCiveira, M., Pinheiro, R., Gredilla, A., De Vallejuelo, S., Oliveira, M., Ramos, C., Taffarel, S., Kautzmann, R., Madariaga, J., Silva, L.F., 2016. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j.scitotenv.2015.12.026.spa
dcterms.referencesClifford, S., Mazaheri, M., Salimi, F., Ezz, W.N., Yeganeh, B., Low-Choy, S., Walker, K., Mengersen, K., Marks, G., Morawska, L., 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 114, 167–180. https://doi.org/10.1016/j.envint.2018.02.019.spa
dcterms.referencesCory-Slechta, D.A., Allen, J.L., Conrad, K., Marvin, E., Sobolewski, M., 2018. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. NeuroToxicology 69, 217–231. https://doi.org/10.1016/j.neuro.2017.12.003.spa
dcterms.referencesCrobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Baeza, A.S., 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular. Environ. Pollut. 230, 125–133. https://doi.org/10.1016/j.envpol.2017.06.051.spa
dcterms.referencesCui, J., Halbrook, R.S., Zang, S., Han, S., Li, X., 2018. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 27 (2), 169–174. https://doi.org/10.1007/s10646-017-1882-4.spa
dcterms.referencesCutruneo, C.M.N.L., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52. https://doi.org/10.1016/j. coal.2014.05.009.spa
dcterms.referencesDa, Costa Oliveira, J.R., Base, L.H., de Abreu, L.C., Filho, C.F., Ferreira, C., Morawska, L., 2019. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 32, 73–81. https://doi.org/10.1016/j.prrv.2019.06.003.spa
dcterms.referencesDall’Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I., Coe, H., 2011. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 11 (13), 6623–6637. https://doi.org/10.5194/acp-11-6623-2011.spa
dcterms.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere (Oxford) 144, 2013–2017. https://doi.org/10.1016/j. chemosphere.2015.10.047.spa
dcterms.referencesDe Kok, T.M.C.M., Driece, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat. Res. Rev. Mutat. Res. 613 (2-3), 103–122. https://doi.org/10.1016/j. mrrev.2006.07.001.spa
dcterms.referencesAQEG, 2017. Ultrafine Particles (UFP) in the UK. Air Quality Expert Group (AQEG). Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. https://uk-air.defra. gov.uk/assets/documents/reports/cat09/1807261113_180703_UFP_Report_FINAL_ for_publication.pdf (accessed 30 December 2020).spa
dcterms.referencesDe Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., Batistuzzo de Medeiros, S.R., 2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960970. doi:https://doi.org/10.1016/j.envpol.2017.09.068spa
dcterms.referencesDe Roma, A., Neola, B., Serpe, F.P., Sansone, D., Picazio, G., Cerino, P., Esposito, M., 2017. Land Snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). O. A. Lib. Journal 4 (2), e3339. https://doi.org/10.4236/oalib.1103339.spa
dcterms.referencesDe Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 169, 725–733. https://doi.org/10.1016/j.chemosphere.2016.09.125.spa
dcterms.referencesDias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60. https://doi.org/10.1016/j.coal.2013.12.011.spa
dcterms.referencesDonaldson, K., Stone, V., Clouter, A., Renwick, L., Macnee, W., 2001. Ultrafine particles. Occup. Environ. Med. 58, 211–216. https://doi.org/10.1136/oem.58.3.211.spa
dcterms.referencesEhn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.B., Jørgensen, S., Kjaergaard, H.G., Canagaratna, M., Maso, M.D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.M., Kulmala, M., Worsnop, D.R., Wildt, J., Mentel, T.F., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476–479. https://ezproxy.cuc.edu.co:2067/10.1038/nature13032.spa
dcterms.referencesFeng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S.S.H., Huang, W., 2019. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 77, 11–19. https://doi.org/ 10.1016/j.jes.2017.12.025.spa
dcterms.referencesFernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A.M., Alastuey, A., Querol, X., González-Castanedo, Y., Garcia-Orellana, I., Nava, S., 2012. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517. https://doi.org/ 10.1016/j.atmosenv.2012.08.003.spa
dcterms.referencesFleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Betran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122 (4), 425–430. https://doi.org/ 10.1289/ehp.1306837.spa
dcterms.referencesForti, L., Jeuland, N., Raux, S., Pasquereau, M., 2005. Analysis of the particulates emitted by internal combustion engines. Oil Gas Sci. Technol 60 (6), 995–1011. https://doi.org/ 10.2516/ogst:2005070.spa
dcterms.referencesGao, R., Sang, N., 2020. Quasi-ultrafine particles promote cell metastasis via HMGB1mediated cancer cell adhesion. Environ. Pollut. 256, 113390. https://doi.org/ 10.1016/j.envpol.2019.113390.spa
dcterms.referencesGao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic. Biol. Med. 151, 7–25. https://doi.org/10.1016/j. freeradbiomed.2020.04.028.spa
dcterms.referencesGarcia, K.O., Teixeira, E.C., Agudelo-Castañeda, D.M., Braga, M., Alabarse, P.G., Wiegand, F., Kautzmann, R.M., Silva, L.F., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in pm1 near an area of heavy-duty traffic. Sci. Total Environ. 479-480, 57–65. https://doi.org/10.1016/j.scitotenv.2014.01.126.spa
dcterms.referencesGasparotto, J., Chaves, P.R., Da Boit, M.K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F.O., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 165, 44–51. https://doi.org/10.1016/j.ecoenv.2018.08.097.spa
dcterms.referencesGasparotto, J., Da Boit, M.K., 2020. Coal as an energy source and its impacts on human health. Energy Geoscience https://doi.org/10.1016/j.engeos.2020.07.003 In press.spa
dcterms.referencesGasparotto, J., Rodrigues, C.P., Da Boit, M.K., Silva, O.L.F., Gelain, D.P., Fonseca, M.J.C., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 133, 110766. https://doi.org/10.1016/j.fct.2019.110766.spa
dcterms.referencesGoel, A., Kumar, P., 2015. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 107, 374–390. https://doi.org/10.1016/j.atmosenv.2015.02.002.spa
dcterms.referencesGómez-Ugalde, R., 2003. Efectos de la contaminación atmosférica en poblaciones de pequeños roedores silvestres (Microtus mexicanus, Peromyscus Melanotis y Peromiscus Difficilis) en México. D. F. Ph.D. Thesis. Universitat de Barcelona, p. 415. https://core.ac.uk/download/pdf/19919452.pdf.spa
dcterms.referencesGonzález, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., LeyvaPorras, C., Silva-Vidaurri, L.G., Acuña Askar, K., Kharissov, B.I., Villareal Chiu, J.F., Alfaro Barbosa, J.M., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22. https://doi.org/10.1016/j. atmosres.2017.05.009.spa
dcterms.referencesGonzalez-Moragas, L., Roig, A., Laromaine, A., 2015. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219, 10–26. https://doi.org/10.1016/j. cis.2015.02.001.spa
dcterms.referencesGrana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A., 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201–210. https://doi.org/10.1016/j.envpol.2017.05.032.spa
dcterms.referencesGuo, L., Johnson, G.R., Hofmann, W., Wang, H., Morawska, L., 2019. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465. https://doi.org/10.1016/j. jaerosci.2019.105465.spa
dcterms.referencesHabre, R., Zhou, H., Eckel, S.P., Enebish, T., Fruin, S., Bastain, T., Rappatort, E., Gilliland, F., 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ. Int. 118, 48–59. https:// doi.org/10.1016/j.envint.2018.05.031.spa
dcterms.referencesHEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Health Effects Institute (HEI) https://www.healtheffects.org/system/files/Perspectives3.pdf.spa
dcterms.referencesHeusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology 56, 94–106. https://doi.org/10.1016/j. neuro.2016.07.007.spa
dcterms.referencesHofman, J., Samson, R., Joosen, S., Blust, R., Lenaerts, S., 2018. Cyclist exposure to black carbon, ultrafine particles and heavy metals: An experimental study along two commuting routes near Antwerp. Belgium. Environ. Res. 164, 530–538. https://doi.org/ 10.1016/j.envres.2018.03.004.spa
dcterms.referencesIslam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10-associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053. https://doi.org/10.1007/ s10653-019-00256-z.spa
dcterms.referencesJantzen, K., Møller, P., Karottki, D.G., Olsen, Y., Bekö, G., Clausen, G., Hersoug, L.G., Loft, S., 2016. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology 359360, 11–18. https://doi.org/10.1016/j.tox.2016.06.007.spa
dcterms.referencesJeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52. https://doi.org/ 10.1016/j.atmosenv.2017.02.015.spa
dcterms.referencesXia, M., Harb, H., Saffari, A., Sioutas, C., Chatila, T.A., 2018. A Jagged 1–Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J. Allergy Clin. Immunol. 142 (4), 1243–1256. https://doi.org/10.1016/j.jaci.2018.03.009.spa
dcterms.referencesXiao, X., Cao, L., Wang, R., Shen, Z.X., Cao, Y.X., 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487–496. https://doi.org/10.1016/j.envpol.2016.07.028.spa
dcterms.referencesYadav, I.C., Linthoingambi, N.D., Kumar, V.S., Li, J., Zhang, G., 2018. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci. Total Environ. 643, 1013–1023. https://doi.org/10.1016/j.scitotenv.2018.06.265.spa
dcterms.referencesYang, B., Li, X., Chen, D., Xiao, C., 2017a. Effects of fine air particulates on gene expression in non-small-cell lung cancer. Adv. Med. Sci. 62 (2), 295–301. https://doi.org/ 10.1016/j.advms.2016.12.003.spa
dcterms.referencesYang, L., Hou, X.Y.Y., Wei, Y., Thai, P., Chai, F., 2017b. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci. Total Environ. 579, 1446–1459. https://doi.org/10.1016/j.scitotenv.2016.11.146.spa
dcterms.referencesZamberland, D.C., Halmenschelager, P.T., Silva, L.F.O., Da Rocha, A., Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ 710, 135306. https://doi.org/10.1016/j.scitotenv.2019.135306.spa
dcterms.referencesZhang, W., Lei, T., Lin, Z.Q., Zhang, H.S., Yang, D.F., Xi, Z.G., Chen, J.H., Wang, W., 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4), 1034–1041. https://doi.org/10.1016/ j.atmosenv.2010.10.043.spa
dcterms.referencesZhang, L., Guo, C., Jia, X., Xu, H., Pan, M., Xu, D., Shen, X., Zhang, J., Tan, J., Qian, H., Dong, C., Shi, Y., Zhou, X., Wu, C., 2018b. Personal exposure measurements of school- children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 13 (4), e0193586. https://doi.org/10.1371/journal.pone.0193586.spa
dcterms.referencesZhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 213, 809–824. https://doi.org/10.1016/j.envpol.2016.03.050.spa
dcterms.referencesZhang, H.H., Li, Z., Liu, Y., Xinag, P., Cui, X.Y., Ye, H., Hu, B.L., Lou, L.P., 2018. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci B 19 (4), 317–326. https://doi.org/ 10.1631/jzus.B1700123.spa
dcterms.referencesZhang, Y., Tu, B., Jiang, X., Xu, G., Liu, X., Tang, Q., Bai, L., Meng, P., Zhang, L., Qin, X., Zou, Z., Chen, C., 2019. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 422, 44–52. https:// doi.org/10.1016/j.tox.2019.04.014.spa
dcterms.referencesZhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., Hu, M., Zhao, L., Toriba, A., Hayakawa, K., Tang, N., 2020. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007.spa
dcterms.referencesZhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z., Wang, D., 2014. Transgenerational effects of trafficrelated fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazardous Mater. 274, 106–114. https://doi.org/10.1016/j.jhazmat.2014.03.064.spa
dcterms.referencesZhao, Y., Wang, F., Zhao, J., 2015. Size-resolved ultrafine particle deposition and Brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Technol. 49, 12153–12160. https://doi.org/10.1021/acs.est.5b02455.spa
dcterms.referencesZhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 26 (1), 205–213. https://doi.org/10.1016/S1001-0742(13) 60399-X.spa
dc.source.urlhttps://www.sciencedirect.com/science/article/pii/S1674987121000116spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.gsf.2021.101147
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal