Show simple item record

dc.creatorMoreno-Ríos, Andrea L.
dc.creatorTejeda-Benitez, Lesly
dc.creatorBustillo Lecompte, Ciro Fernando
dc.description.abstractAir pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These particles are conditioned to the aerodynamic diameter and thus classified as coarse (2.5–10 μm), fine (0.1–2.5 μm), and ultrafine (<0.1 μm), where the degree of toxicity becomes greater for smaller particles. These particles can get into the lungs and translocate into vital organs due to their size, causing significant human health consequences. Besides, PM pollutants have been linked to respiratory conditions, genotoxic, mutagenic, and carcinogenic activity in human beings. This paper presents an overview of emission sources, physicochemical characteristics, collection and measurement methodologies, toxicity, and existing control mechanisms for ultrafine particles (UFPs) in the last fifteen
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.sourceGeoscience Frontiersspa
dc.subjectParticulate matterspa
dc.subjectUltrafine particlesspa
dc.subjectAir pollutionspa
dc.subjectMeasurement methodologiesspa
dc.titleSources, characteristics, toxicity, and control of ultrafine particles: an overviewspa
dcterms.referencesAbbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D., Garçon, G., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–475.
dcterms.referencesAbdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25 (1), 107–123.
dcterms.referencesAbramesko, V., Tartakovsky, L., 2017. Ultrafine particle air pollution inside dieselpropelled passenger trains. Environ. Pollut. 226, 288–296.
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.
dcterms.referencesAgudelo-Castañeda, D.M., Teixeira, E.C., Braga, M., Rolim, S.B.A., Silva, L.F.O., Beddows, D.C.S., Harrison, R.M., Querol, X., 2019. Cluster analysis of urban ultrafine particles size distributions. Atmos. Pollut. Res. 10 (1), 45–52.
dcterms.referencesAllen, J.L., Oberdörster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M., Cory-Slechta, D.A., 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59, 140–154.
dcterms.referencesAzarmi, F., Kumar, P., 2016. Ambient exposure to coarse and fine particle emissions from building demolition. Atmos. Environ. 137, 62–79.
dcterms.referencesAzarmi, F., Kumar, P., Mulheron, M., 2014. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J. Hazard. Mater. 279, 268–279.
dcterms.referencesAzarmi, F., Kumar, P., Marsh, D., Fuller, G., 2016. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environ. Sci.: Process. Impacts 18 (2), 208–221.
dcterms.referencesBadran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Guidice, J.M.L., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440.
dcterms.referencesBhargava, A., Tamrakar, S., Aglawe, A., Lad, H., Kumar, R.S., Kumar, D., Tiwari, R., Chaudhury, K., Yu, I., Kumar, P., 2018. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage. Environ. Pollut. 234, 406–419.
dcterms.referencesBhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., Gupta, P.K., Rahman, A., Chaudhury, K., Tiwari, R., Goryacheva, I.Y., Mishra, P.K., 2019. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ. Pollut. 252, 39–50.
dcterms.referencesBillet, S., Landkocz, Y., Martin, P.J., Verdin, A., Ledoux, F., Lepers, C., André, V., Cazier, F., Sichel, F., Shirali, P., Gosset, P., Courcot, D., 2018. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 71, 168–178.
dcterms.referencesBliss, B., Tran, K.I., Sioutas, C., Campbell, A., 2018. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors. Environ. Res. 161, 314–320.
dcterms.referencesBourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634–642.
dcterms.referencesBriffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9), e04691.
dcterms.referencesBuiarelli, F., Di Filippo, P., Massimi, L., Pomata, D., Riccardi, C., Simonetti, G., Sonego, E., 2019. Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmos. Pollut. Res. 10 (5), 1685–1690.
dcterms.referencesBuonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31 (11), 2253–2262.
dcterms.referencesBurtscher, H., Schüepp, K., 2012. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 13 (2), 89–94.
dcterms.referencesBuzea, C., Pacheco, I., 2019. 28 - Toxicity of nanoparticles. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S. (Eds.), Nanotechnology in Eco-efficient Construction. Woodhead Publishing Series in Civil and Structural Engineering, Cambridge, pp. 705–754
dcterms.referencesBuzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71.
dcterms.referencesBzdek, B.R., Pennington, M.R., Johnston, M.V., 2012. Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci. 52, 109–120. 10.1016/
dcterms.referencesCastro-Rodriguez, J.A., Forno, E., Rodriguez-Martinez, C.E., Celedón, J.C., 2016. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. In Practice 4 (6), 1111–1122.
dcterms.referencesCervellati, F., Benedusi, M., Manarini, F., Woodby, B., Russo, M., Valacchi, G., Pietrogrande, M.C., 2020. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240, 124746. 10.1016/
dcterms.referencesChen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., Chen, C., 2016. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA), General Subjects 1860 (12), 2844–2855.
dcterms.referencesChen, C., Zhao, Y., Zhang, Y., Zhao, B., 2017. Source strength of ultrafine and fine particle due to Chinese cooking. Procedia Eng. 205, 2231–2237.
dcterms.referencesChen, Q.Y., DesMarais, T., Costa, M., 2019. Metals and mechanisms of carcinogénesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554. https://10.1146/
dcterms.referencesChen, X.C., Cao, J.J., Ward, T.J., Tian, L.W., Ning, Z., Kumar, N.G., Aquilina, N.J., Lam, S.H.Y., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ 742, 140501.
dcterms.referencesCheng, Z., Liang, X., Liang, S., Yin, N., Faiola, F., 2020. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J. Environ. Sci 87, 194–204.
dcterms.referencesChu, B., Matti Kerminen, V., Bianchi, F., Yan, C., Petäjä, T., Kulmala, M., 2019. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19 (1), 115–138. 10.5194/
dcterms.referencesChung, M.C., Tsai, M.H., Que, D.E., Bongo, S.J., Hsu, W.L., Tayo, L.L., Lin, Y.H., Lin, S.L., Gou, Y.Y., Hsu, Y.C., Hou, W.C., Huang, K.L., Chao, H.R., 2019. Fine particulate matterinduced toxic effects in an animal model of caenorhabditis elegans. Aerosol Air Qual. Res. 19 (5), 1068–1078.
dcterms.referencesCiveira, M., Pinheiro, R., Gredilla, A., De Vallejuelo, S., Oliveira, M., Ramos, C., Taffarel, S., Kautzmann, R., Madariaga, J., Silva, L.F., 2016. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892–900.
dcterms.referencesClifford, S., Mazaheri, M., Salimi, F., Ezz, W.N., Yeganeh, B., Low-Choy, S., Walker, K., Mengersen, K., Marks, G., Morawska, L., 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 114, 167–180.
dcterms.referencesCory-Slechta, D.A., Allen, J.L., Conrad, K., Marvin, E., Sobolewski, M., 2018. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. NeuroToxicology 69, 217–231.
dcterms.referencesCrobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Baeza, A.S., 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular. Environ. Pollut. 230, 125–133.
dcterms.referencesCui, J., Halbrook, R.S., Zang, S., Han, S., Li, X., 2018. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 27 (2), 169–174.
dcterms.referencesCutruneo, C.M.N.L., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52.
dcterms.referencesDa, Costa Oliveira, J.R., Base, L.H., de Abreu, L.C., Filho, C.F., Ferreira, C., Morawska, L., 2019. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 32, 73–81.
dcterms.referencesDall’Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I., Coe, H., 2011. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 11 (13), 6623–6637.
dcterms.referencesDalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere (Oxford) 144, 2013–2017.
dcterms.referencesDe Kok, T.M.C.M., Driece, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat. Res. Rev. Mutat. Res. 613 (2-3), 103–122.
dcterms.referencesAQEG, 2017. Ultrafine Particles (UFP) in the UK. Air Quality Expert Group (AQEG). Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. https://uk-air.defra. for_publication.pdf (accessed 30 December 2020).spa
dcterms.referencesDe Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., Batistuzzo de Medeiros, S.R., 2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960970. doi:
dcterms.referencesDe Roma, A., Neola, B., Serpe, F.P., Sansone, D., Picazio, G., Cerino, P., Esposito, M., 2017. Land Snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). O. A. Lib. Journal 4 (2), e3339.
dcterms.referencesDe Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 169, 725–733.
dcterms.referencesDias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60.
dcterms.referencesDonaldson, K., Stone, V., Clouter, A., Renwick, L., Macnee, W., 2001. Ultrafine particles. Occup. Environ. Med. 58, 211–216.
dcterms.referencesEhn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.B., Jørgensen, S., Kjaergaard, H.G., Canagaratna, M., Maso, M.D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.M., Kulmala, M., Worsnop, D.R., Wildt, J., Mentel, T.F., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476–479.
dcterms.referencesFeng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S.S.H., Huang, W., 2019. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 77, 11–19. 10.1016/
dcterms.referencesFernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A.M., Alastuey, A., Querol, X., González-Castanedo, Y., Garcia-Orellana, I., Nava, S., 2012. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517. 10.1016/
dcterms.referencesFleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Betran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122 (4), 425–430. 10.1289/
dcterms.referencesForti, L., Jeuland, N., Raux, S., Pasquereau, M., 2005. Analysis of the particulates emitted by internal combustion engines. Oil Gas Sci. Technol 60 (6), 995–1011. 10.2516/
dcterms.referencesGao, R., Sang, N., 2020. Quasi-ultrafine particles promote cell metastasis via HMGB1mediated cancer cell adhesion. Environ. Pollut. 256, 113390. 10.1016/
dcterms.referencesGao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic. Biol. Med. 151, 7–25.
dcterms.referencesGarcia, K.O., Teixeira, E.C., Agudelo-Castañeda, D.M., Braga, M., Alabarse, P.G., Wiegand, F., Kautzmann, R.M., Silva, L.F., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in pm1 near an area of heavy-duty traffic. Sci. Total Environ. 479-480, 57–65.
dcterms.referencesGasparotto, J., Chaves, P.R., Da Boit, M.K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F.O., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 165, 44–51.
dcterms.referencesGasparotto, J., Da Boit, M.K., 2020. Coal as an energy source and its impacts on human health. Energy Geoscience In
dcterms.referencesGasparotto, J., Rodrigues, C.P., Da Boit, M.K., Silva, O.L.F., Gelain, D.P., Fonseca, M.J.C., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 133, 110766.
dcterms.referencesGoel, A., Kumar, P., 2015. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 107, 374–390.
dcterms.referencesGómez-Ugalde, R., 2003. Efectos de la contaminación atmosférica en poblaciones de pequeños roedores silvestres (Microtus mexicanus, Peromyscus Melanotis y Peromiscus Difficilis) en México. D. F. Ph.D. Thesis. Universitat de Barcelona, p. 415.
dcterms.referencesGonzález, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., LeyvaPorras, C., Silva-Vidaurri, L.G., Acuña Askar, K., Kharissov, B.I., Villareal Chiu, J.F., Alfaro Barbosa, J.M., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22.
dcterms.referencesGonzalez-Moragas, L., Roig, A., Laromaine, A., 2015. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219, 10–26.
dcterms.referencesGrana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A., 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201–210.
dcterms.referencesGuo, L., Johnson, G.R., Hofmann, W., Wang, H., Morawska, L., 2019. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465.
dcterms.referencesHabre, R., Zhou, H., Eckel, S.P., Enebish, T., Fruin, S., Bastain, T., Rappatort, E., Gilliland, F., 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ. Int. 118, 48–59. https://
dcterms.referencesHEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Health Effects Institute (HEI)
dcterms.referencesHeusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology 56, 94–106.
dcterms.referencesHofman, J., Samson, R., Joosen, S., Blust, R., Lenaerts, S., 2018. Cyclist exposure to black carbon, ultrafine particles and heavy metals: An experimental study along two commuting routes near Antwerp. Belgium. Environ. Res. 164, 530–538. 10.1016/
dcterms.referencesIslam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10-associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053.
dcterms.referencesJantzen, K., Møller, P., Karottki, D.G., Olsen, Y., Bekö, G., Clausen, G., Hersoug, L.G., Loft, S., 2016. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology 359360, 11–18.
dcterms.referencesJeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52. 10.1016/
dcterms.referencesXia, M., Harb, H., Saffari, A., Sioutas, C., Chatila, T.A., 2018. A Jagged 1–Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J. Allergy Clin. Immunol. 142 (4), 1243–1256.
dcterms.referencesXiao, X., Cao, L., Wang, R., Shen, Z.X., Cao, Y.X., 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487–496.
dcterms.referencesYadav, I.C., Linthoingambi, N.D., Kumar, V.S., Li, J., Zhang, G., 2018. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci. Total Environ. 643, 1013–1023.
dcterms.referencesYang, B., Li, X., Chen, D., Xiao, C., 2017a. Effects of fine air particulates on gene expression in non-small-cell lung cancer. Adv. Med. Sci. 62 (2), 295–301. 10.1016/
dcterms.referencesYang, L., Hou, X.Y.Y., Wei, Y., Thai, P., Chai, F., 2017b. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci. Total Environ. 579, 1446–1459.
dcterms.referencesZamberland, D.C., Halmenschelager, P.T., Silva, L.F.O., Da Rocha, A., Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ 710, 135306.
dcterms.referencesZhang, W., Lei, T., Lin, Z.Q., Zhang, H.S., Yang, D.F., Xi, Z.G., Chen, J.H., Wang, W., 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4), 1034–1041.
dcterms.referencesZhang, L., Guo, C., Jia, X., Xu, H., Pan, M., Xu, D., Shen, X., Zhang, J., Tan, J., Qian, H., Dong, C., Shi, Y., Zhou, X., Wu, C., 2018b. Personal exposure measurements of school- children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 13 (4), e0193586.
dcterms.referencesZhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 213, 809–824.
dcterms.referencesZhang, H.H., Li, Z., Liu, Y., Xinag, P., Cui, X.Y., Ye, H., Hu, B.L., Lou, L.P., 2018. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci B 19 (4), 317–326. 10.1631/
dcterms.referencesZhang, Y., Tu, B., Jiang, X., Xu, G., Liu, X., Tang, Q., Bai, L., Meng, P., Zhang, L., Qin, X., Zou, Z., Chen, C., 2019. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 422, 44–52. https://
dcterms.referencesZhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., Hu, M., Zhao, L., Toriba, A., Hayakawa, K., Tang, N., 2020. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 88, 370–384.
dcterms.referencesZhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z., Wang, D., 2014. Transgenerational effects of trafficrelated fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazardous Mater. 274, 106–114.
dcterms.referencesZhao, Y., Wang, F., Zhao, J., 2015. Size-resolved ultrafine particle deposition and Brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Technol. 49, 12153–12160.
dcterms.referencesZhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 26 (1), 205–213.

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal