Show simple item record

dc.creatorMattos, Sergio
dc.creatorDiel, Leonardo Francisco
dc.creatorBittencourt, Leonardo
dc.creatorSchnorr, C.E.
dc.creatorGonçalves, F.A.
dc.creatorBernardi, L.
dc.creatorLamers, M.L.
dc.date.accessioned2021-03-12T20:24:13Z
dc.date.available2021-03-12T20:24:13Z
dc.date.issued2021-01-25
dc.identifier.issn0100-879X
dc.identifier.issn1414-431X
dc.identifier.urihttps://hdl.handle.net/11323/8002
dc.description.abstractMolecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Science using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceBrazilian Journal of Medical and Biological Researchspa
dc.subjectOral cancerspa
dc.subjectSurvivalspa
dc.subjectPrognosisspa
dc.subjectDisease-free survivalspa
dc.subjectEnergy metabolismspa
dc.titleGlycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysisspa
dc.typearticlespa
dcterms.references1 Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer2016; 16: 635–649, doi: 10.1038/nrc.2016.77. [ Links ]spa
dcterms.references2 Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep2016; 6: 31520, doi: 10.1038/srep31520. [ Links ]spa
dcterms.references3 Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol2009; 45: 301–308, doi: 10.1016/j.oraloncology.2009.01.004. [ Links ]spa
dcterms.references4 Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int2014; 2014: 850316, doi: 10.1155/2014/850316. [ Links ]spa
dcterms.references5 Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer2011; 105: 469–474, doi: 10.1038/bjc.2011.245. [ Links ]spa
dcterms.references6 Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60. [ Links ]spa
dcterms.references7 Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia2011; 13: 81–97, doi: 10.1593/neo.101102. [ Links ]spa
dcterms.references8 Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol2011; 2011: 603740. [ Links ]spa
dcterms.references9 Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov2011; 10: 671–684, doi: 10.1038/nrd3504. [ Links ]spa
dcterms.references10 Cochran WG. The combination of estimates from different experiments. Biometrics1954; 10: 101–129, doi: 10.2307/3001666. [ Links ]spa
dcterms.references11 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557. [ Links ]spa
dcterms.references12 Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget2017; 8: 22460–22476, doi: 10.18632/oncotarget.13006. [ Links ]spa
dcterms.references13 Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2. [ Links ]spa
dcterms.references14 Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT-1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol2014; 117: 743–753, doi: 10.1016/j.oooo.2014.02.007. [ Links ]spa
dcterms.references15 Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep2011; 25: 1227–1233, doi: 10.3892/or.2011.1216. [ Links ]spa
dcterms.references16 Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer2003; 97: 1015–1024, doi: 10.1002/cncr.11159. [ Links ]spa
dcterms.references17 Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck2016; 38: E1075–E1085, doi: 10.1002/hed.24161. [ Links ]spa
dcterms.references18 Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x. [ Links ]spa
dcterms.references19 Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One2015; 10: e0125976, doi: 10.1371/journal.pone.0125976. [ Links ]spa
dcterms.references20 Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551. [ Links ]spa
dcterms.references21 Eckert A, Lautner M, Schütze A, Taubert H, Schubert J, Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology2011; 58: 1136–1147, doi: 10.1111/j.1365-2559.2011.03806.x. [ Links ]spa
dcterms.references22 Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer2013; 13: 569, doi: 10.1186/1471-2407-13-569. [ Links ]spa
dcterms.references23 Kunkel M, Förster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8. [ Links ]spa
dcterms.references24 Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005. [ Links ]spa
dcterms.references25 Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol2015; 8: 119–125, doi: 10.1016/j.tranon.2015.03.001. [ Links ]spa
dcterms.references26 Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9. [ Links ]spa
dcterms.references27 Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol2009; 45: 963–967, doi: 10.1016/j.oraloncology.2009.06.008. [ Links ]spa
dcterms.references28 Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006. [ Links ]spa
dcterms.references29 Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDG-PET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004. [ Links ]spa
dcterms.references30 Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep2018; 8: 11817, doi: 10.1038/s41598-018-30111-7. [ Links ]spa
dcterms.references31 Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018. [ Links ]spa
dcterms.references32 Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009. [ Links ]spa
dcterms.references33 Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009. [ Links ]spa
dcterms.references34 Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo2018; 32: 1193–1198, doi: 10.21873/invivo.11363. [ Links ]spa
dcterms.references35 Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol2018; 48: 633–639, doi: 10.1093/jjco/hyy065. [ Links ]spa
dcterms.references36 Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg2014; 43: 33. [ Links ]spa
dcterms.references37 Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol2019; 35: 308–314, doi: 10.1007/s11282-019-00377-2. [ Links ]spa
dcterms.references38 Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004. [ Links ]spa
dcterms.references39 Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2. [ Links ]spa
dcterms.references40 Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z. [ Links ]spa
dcterms.references41 Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore)2016; 95: e5324, doi: 10.1097/MD.0000000000005324. [ Links ]spa
dcterms.references42 Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer2008; 8: 705–713, doi: 10.1038/nrc2468. [ Links ]spa
dcterms.references43 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell2011; 144: 646–674, doi: 10.1016/j.cell.2011.02.013. [ Links ]spa
dcterms.references44 Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7. [ Links ]spa
dcterms.references45 Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int2013; 13: 89, doi: 10.1186/1475-2867-13-89. [ Links ]spa
dcterms.references46 Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005. [ Links ]spa
dcterms.references47 Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer2017; 16: 178, doi: 10.1186/s12943-017-0748-y. [ Links ]spa
dcterms.references48 Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA2014; 111: 15526–15531, doi: 10.1073/pnas.1407717111. [ Links ]spa
dcterms.references49 Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther2018; 11: 2075–2082, doi: 10.2147/OTT.S152999. [ Links ]spa
dcterms.references50 Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep2017; 7: 2886, doi: 10.1038/s41598-017-03031-1. [ Links ]spa
dcterms.references51 Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014. [ Links ]spa
dcterms.references52 Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333. [ Links ]spa
dcterms.references53 Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab2015; 21: 65–80, doi: 10.1016/j.cmet.2014.12.005. [ Links ]spa
dcterms.references54 Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med2016; 213: 337–354, doi: 10.1084/jem.20150900. [ Links ]spa
dcterms.references55 Yang P, Li Z, Li H, Lu Y, Wu H, Li Z. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer. Cell Signal2015; 27: 1525–1532, doi: 10.1016/j.cellsig.2015.02.032. [ Links ]spa
dcterms.references56 Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer2007; 17: 101–106, doi: 10.1111/j.1525-1438.2007.00799.x. [ Links ]spa
dcterms.references57 Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci2017; 18: 878, doi: 10.3390/ijms18040878. [ Links ]spa
dcterms.references58 Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark2015; 15: 591–597, doi: 10.3233/CBM-150499. [ Links ]spa
dcterms.references59 Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol2017; 91: 53–59, doi: 10.1016/j.biocel.2017.08.016. [ Links ]spa
dcterms.references60 Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials.gov: cross sectional analysis. BMJ2012; 344: d7292, doi: 10.1136/bmj.d7292. [ Links ]spa
dc.source.urlhttps://www.scielo.br/scielo.php?pid=S0100-879X2021000300301&script=sci_arttext&tlng=enspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1590/1414-431x202010504
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal