Show simple item record

dc.creatorBedoya, D.
dc.creatorOrtega, M.
dc.creatorRamírez, W.
dc.creatorUrieles, A.
dc.date.accessioned2021-03-12T21:34:06Z
dc.date.available2021-03-12T21:34:06Z
dc.date.issued2021
dc.identifier.issn1027-4634
dc.identifier.issn2411-0620
dc.identifier.urihttps://hdl.handle.net/11323/8005
dc.description.abstractWe introduce two biparametric families of Apostol-Frobenius-Euler polynomials of level-mm. We give some algebraic properties, as well as some other identities which connect these polynomial class with the generalized λλ-Stirling type numbers of the second kind, the generalized Apostol--Bernoulli polynomials, the generalized Apostol--Genocchi polynomials, the generalized Apostol--Euler polynomials and Jacobi polynomials. Finally, we will show the differential properties of this new family of polynomials.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceMatematychni Studiispa
dc.subjectGeneralized Apostol-type polynomialsspa
dc.subjectApostol–frobennius–euler polynomialsspa
dc.subjectApostol-bernoulli polynomials of higher orderspa
dc.subjectApostol–genocchi polynomials of higher orderspa
dc.subjectGeneralized λ -Stirling numbers of second kindspa
dc.titleNew biparametric families of apostol-frobenius-euler polynomials of level mspa
dc.typearticlespa
dcterms.references1. Araci S., Acikgoz M., Construction of fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Difference Equ., 2018.spa
dcterms.references2. Askey R., Orthogonal polynomials and special functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol 3, England, 1975.spa
dcterms.references3. Carlitz L., Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260.spa
dcterms.references4. Comtet L., Advanced combinatorics: the art of finite and infinite expansions, Reidel, Dordrecht and Boston, 1974.spa
dcterms.references5. Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York, 1994. 6. Kurt B., Simsek Y., On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ., 1 (2013).spa
dcterms.references7. Masjed-Jamei M., Koepf W., Symbolic computation of some power-trigonometric series, J. Symbolic Comput., 80 (2017), 273–284.spa
dcterms.references8. Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163.spa
dcterms.references9. Kilar N., Simsek Y., Two parametric kinds of Eulerian-type polynomials associated with Eulers formula, Symmetry, 11 (2019), 1–19.spa
dcterms.references10. Quintana Y., Ram´irez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53 (2018).spa
dcterms.references11. Quintana Y., Ram´irez W., Urieles G., Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 2, (2019), №2.spa
dcterms.references12. Quintana Y., Ram´irez, W., Urieles A., Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14, (2020), №4, 583–596.spa
dcterms.references13. Ram´irez W., Castilla L., Urieles A., An extended generalized q–extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950.spa
dcterms.references14. Ortega M., Ramirez W., Urieles A., New generalized Apostol–Frobenius-Euler polynomials and their matrix approach, Kragujevac. Journal. of Mathematics, 45 (2021), 393–407.spa
dcterms.references15. Simsek Y., Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application, Fixed point Theory and Applications, 87 (2013).spa
dcterms.references16. Y. Simsek, q–Analogue of twisted l–series and q–twisted Euler numbers, Journal of Number Theory, 110 (2005), 267–278.spa
dcterms.references17. Y. Simsek, Generating functions for q–Apostol type Frobenius–Euler numbers and polynomials, Axioms, 1 (2012), 395–403; doi:10.3390/axioms1030395.spa
dcterms.references18. Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius–Euler numbers, Advanced Studies in Contemporary Math., 15 (2007), №2, 187–194.spa
dcterms.references19. Y. Simsek, T. Kim, H.M. Srivastava, q–Bernoulli numbers and polynomials associated with multiple q–zeta functions and basic L–series, Russ. J. Math. Phys., 12 (2005), №2, 241–268.spa
dcterms.references20. Y. Simsek, T. Kim, D.W. Park, Y.S. Ro, L.C. Jang, S.H. Rim, An explicit formula for the multiple Frobenius-Euler numbers and polynomials, JP J. Algebra Number Theory Appl., 4 (2004), №3, 519–529.spa
dcterms.references21. Srivastava H.M., Garg M., Choudhary S, A new generalization of the Bernoulli and related polynomials, Russian J. of Math. Phys., 17, (2010), 251–261.spa
dcterms.references22. Srivastava H.M., Garg M., Choudhary S., Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math., 15 (2011), №1, 283–305.spa
dcterms.references23. Urieles A., Ortega M., Ramirez W., Veg S., New results on the q–generalized Bernoulli polynomials of level m, Demonstratio Mathematica, 52 (2019), 511–522.spa
dcterms.references24. Urieles A., Ram´irez W., Ortega M.J., et al., Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Differ. Equ., 534 (2020), https://doi.org/ 10.1186/s13662-020-02988-0.spa
dc.source.urlhttp://www.matstud.org.ua/ojs/index.php/matstud/article/view/70spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.30970/ms.55.1.10-23
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal