Show simple item record

dc.creatorParody Muñoz, Alexander Elias
dc.creatorCharris, Dhizzy
dc.creatoramelec, viloria
dc.creatorCervera Cárdenas, Jorge Eduardo
dc.creatorHernandez, Hugo
dc.date.accessioned2021-03-15T20:39:38Z
dc.date.available2021-03-15T20:39:38Z
dc.date.issued2020-09-08
dc.identifier.issn18761119
dc.identifier.issn18761100
dc.identifier.urihttps://hdl.handle.net/11323/8019
dc.description.abstractThis study seeks to determine the influence of process variables: consumption percentage in the mixture, pasilla percentage in the mixture, storage time, humidity percentage in the product for consumption, humidity percentage in the pasilla, humidity percentage in roasted coffee, average humidity in finished product, average color in roasted coffee, and average color in finished product, for the shrinkage of packed coffee in a coffee processing plant of Arabica type. Using a multiple linear regression model, the study stated that the variables of humidity percentage of roasted coffee and color of roasted coffee have a statistically significant relationship with a confidence of 95% (p-value < 0.05). It was concluded that these variables explain 99.95% of the variability in the shrinkage, and the relation of the shrinkage with the humidity percentage is inversely proportional, but the relation of this variable with the color of roasted coffee is directly proportional. The tests applied to the model wastes proved that the model is suitable for predicting the shrinkage in the process.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceLecture Notes in Electrical Engineeringspa
dc.subjectMultiple linear regressionspa
dc.subjectShrinkage in a processspa
dc.subjectHumidityspa
dc.subjectStatistical quality controlspa
dc.titleA method for the prediction of the shrinkage in roasted and ground coffee using multivariable statisticsspa
dc.typePreprintspa
dcterms.references1. Moscoso M (2016) El café, una de las bebidas más consumidas del mundo.[Online] natural medio ambiente. Obtenido de: https://www.natura-medioambiental.com/el-cafe-una-de-las-bebidas-mas-consumidas-del-mundo/. Acceso 5 abril 2018spa
dcterms.references2. Nuñez J (2002) Optimización de la Producción en la Empresa Elaborados de Caféspa
dcterms.references3. Suarez H, Bello H (2016) Estudio de viabilidad para la modernización del proceso de tostión de una de las líneas de café tostado y molido de la empresa Café de Colombiaspa
dcterms.references4. Parody A et al (2018) Application of a central design composed of surface of response for the determination of the flatness in the steel sheets of a colombian steel. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Chamspa
dcterms.references5. Izquierdo NV, Lezama OBP, Dorta RG, Viloria A, Deras I, Hernández-Fernández L (2018) Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Chamspa
dcterms.references6. Viloria A et al (2018) Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Chamspa
dcterms.references7. Parody A, Viloria A, Lis JP, Malagón LE, Calí EG, Hernández Palma H (2018) Application of an experimental design of D-optimum mixing based on restrictions for the optimization of the pre-painted steel line of a steel producer and marketing company. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Chamspa
dcterms.references8. Castaño J, Quintero G (2001) Optimización de la torrefacción de mezclas de café sano y brocado, en función de la temperatura de proceso y el agua de apagadospa
dcterms.references9. Kizys R, Juan A (2005) Modelo de regresión lineal múltiplespa
dcterms.references10. Conejo AJ, Contreras J, Espinola R, Plazas MA (2005) Forecasting electricity prices for a day-ahead pool-based electric energy market. Int J Forecast 21(3):435–462spa
dcterms.references11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297spa
dcterms.references12. Du XF, Leung SCH, Zhang JL, Lai KK (2011) Demand forecasting of perishable farm products using support vector machine. Int J Syst Sci 44(3):556–567spa
dcterms.references13. Garcia MI (2003) Análisis Y Predicción De La Serie De Tiempo Del Precio Externo Del Café Colombiano Utilizando Redes Neuronales Artificiales. Universitas Scientiarum 8:45–50spa
dcterms.references14. Garson GD (1991) Interpreting neural network connection weights. AI Expert, pp 47–51spa
dcterms.references15. Gedeon TD (1997) Data mining of inputs: analysing magnitude and functional measures. Int J Neural Syst 8(2):209–218spa
dcterms.references16. Glorfeld LW (1996) A methodology for simplification and interpretation of backpropagation-based neural network models. Expert Syst Appl 10(1):37–54spa
dcterms.references17. Gunn SR (1998) Support vector machines for classification and regression. ISIS 14(1): 5–16spa
dcterms.references18. Hanke JE, Wichern DW (2006) Pronósticos en los negocios. Pearson Educaciónspa
dcterms.references19. Heravi S, Osborn DR, Birchenhall CR (2004) Linear versus neural network forecasts for European industrial production series. Int J Forecast 20(3):435–446spa
dcterms.references20. Izar J, Ynzunza C, Guarneros O (2016) Variabilidad de la demanda del tiempo de entrega, existencias de seguridad y costo del inventario Contaduría y Administración 61(3): 499–513spa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-5558-9_12spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-5558-9_12


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal