Show simple item record

dc.creatorSilva, Jesús
dc.creatorVarela Izquierdo, Noel
dc.creatorNEIRA MOLINA, HAROLD ROBERTO
dc.creatorPineda, Omar
dc.date.accessioned2021-03-17T16:17:46Z
dc.date.available2021-03-17T16:17:46Z
dc.date.issued2020-07-19
dc.identifier.issn18650929
dc.identifier.urihttps://hdl.handle.net/11323/8036
dc.descriptionRetractedspa
dc.description.abstractCurrently many organizations have adopted the development of software projects with agile methodologies, particularly Scrum, which has more than 20 years of development. In these methodologies, software is developed iteratively and delivered to the client in increments called releases. In the releases, the goal is to develop system functionality that quickly adds value to the client’s business. At the beginning of the project, one or more releases are planned. For solving the problem of replanning in the context of releases, a model is proposed considering the characteristics of agile development using Scrum. The results obtained show that the algorithm takes a little less than 7 min for solutions that propose replanning composed by 16 sprints, which is equivalent to 240 days of project. They show that applying a repair operator increases the hypervolume qualityspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherCorporación Universidad de la Costaspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceCommunications in Computer and Information Sciencespa
dc.subjectGenetic algorithmspa
dc.subjectAgile software projectsspa
dc.subjectMulti-targetspa
dc.titleSoftware project planning through comparison of Bio-inspired algorithmsspa
dc.typearticlespa
dcterms.references1. Semenkina, O.E., Popov, E.A., Ryzhikov, I.S.: Hierarchical scheduling problem in the field of manufacturing operational planning. In: IOP Conference Series: Materials Science and Engineering, vol. 537, no. 3, p. 032001. IOP Publishing (2019)spa
dcterms.references2. Phanden, R.K., Jain, A., Davim, J.P. (eds.): Integration of Process Planning and Scheduling: Approaches and Algorithms. CRC Press, Boca Raton (2019)spa
dcterms.references3. Jahr, M.: A hybrid approach to quantitative software project scheduling within agile frameworks. Project Manage. J. 45(3), 35–45 (2014)spa
dcterms.references4. Roque, L., Araújo, A.A., Dantas, A., Saraiva, R., Souza, J.: Human resource allocation in agile software projects based on task similarities. In: Sarro, F., Deb, K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 291–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47106-8_25spa
dcterms.references5. Varas, J.M., et al.: MAXCMAS project: autonomous COLREGs compliant ship navigation. In: Proceedings of the 16th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT) 2017, pp. 454–464 (2017)spa
dcterms.references6. Ge, Y.: Software project rescheduling with genetic algorithms. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1, pp. 439–443. IEEE, Shanghai (2009)spa
dcterms.references7. Ge, Y., Xu, B.: Dynamic staffing and rescheduling in software project management: a hybrid approach. PLoS ONE 11(6), e0157104 (2016)spa
dcterms.references8. Shen, X., Minku, L.L., Bahsoon, R., Yao, X.: Dynamic software project scheduling through a proactive-rescheduling method. Trans. Softw. Eng. 42(7), 658–686 (2016)spa
dcterms.references9. Shen, X.N., Minku, L.L., Marturi, N., Guo, Y.N., Han, Y.: A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Inf. Sci. 428, 1–29 (2018)spa
dcterms.references10. Song, Y.J., Zhang, Z.S., Song, B.Y., Chen, Y.W.: Improved genetic algorithm with local search for satellite range scheduling system and its application in environmental monitoring. Sustain. Comput. Inf. Syst. 21, 19–27 (2019)spa
dcterms.references11. Moosavi, S.H.S., Bardsiri, V.K.: Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017)spa
dcterms.references12. Zheng, Z., Guo, J., Gill, E.: Swarm satellite mission scheduling & planning using hybrid dynamic mutation genetic algorithm. Acta Astronaut. 137, 243–253 (2017)spa
dcterms.references13. Viloria, A., Acuña, G.C., Franco, D.J.A., Hernández-Palma, H., Fuentes, J.P., Rambal, E.P.: Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)spa
dcterms.references14. Deng, M., et al.: A two-phase coordinated planning approach for heterogeneous earth-observation resources to monitor area targets. IEEE Trans. Syst. Man Cybern. Syst. (2020)spa
dcterms.references15. Ghoddousi, P., Ansari, R., Makui, A.: An improved robust buffer allocation method for the project scheduling problem. Eng. Optim. 49(4), 718–731 (2017)spa
dcterms.references16. Tomori, H., Hiyoshi, K.: Control of pneumatic artificial muscles using local cyclic inputs and genetic algorithm. Actuators 7(3), 36 (2018)spa
dcterms.references17. Ibraigheeth, M., Fadzli, S.A.: Core factors for software projects success. JOIV Int. J. Inf. Visual. 3(1), 69–74 (2019)spa
dcterms.references18. da Silva Arantes, J., da Silva Arantes, M., Toledo, C.F.M., Júnior, O.T., Williams, B.C.: An embedded system architecture based on genetic algorithms for mission and safety planning with UAV. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1049–1056 (2017)spa
dcterms.references19. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. 36(2), 1627–1637 (2019)spa
dcterms.references20. Viloria, A., Robayo, P.V.: Virtual network level of application composed IP networks connected with systems-(NETS Peer-to-Peer). Indian J. Sci. Technol. 9, 46 (2016)spa
dcterms.references21. Plice, L., Lau, B., Pisanich, G., Young, L.A.: Biologically inspired behavioral strategies for autonomous aerial explorers on Mars. In: 2003 IEEE Aerospace Conference Proceedings (Cat. No. 03TH8652), vol. 1, pp. 1–304. IEEE (2003)spa
dcterms.references22. Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm for energy optimization in a self-organizing data center. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 127–151. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14412-7_7spa
dcterms.references23. Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model based on cuckoo search. Int. J. Bio Inspired Comput. 4(5), 278–285 (2012)spa
dcterms.references24. Sheta, A.F., Ayesh, A., Rine, D.: Evaluating software cost estimation models using particle swarm optimisation and fuzzy logic for NASA projects: a comparative study. Int. J. Bio Inspired Comput. 2(6), 365–373 (2010)spa
dcterms.references25. Tempesti, G.: Architectures and design methodologies for bio-inspired computing machines. In: SNF Professorship Application Research Plan (2003)spa
dcterms.references26. Chiang, H.S., Sangaiah, A.K., Chen, M.Y., Liu, J.Y.: A novel artificial bee colony optimization algorithm with SVM for bio-inspired software-defined networking. Int. J. Parallel Prog. 1–19 (2018)spa
dcterms.references27. Camacho, D., et al.: From ephemeral computing to deep bioinspired algorithms: new trends and applications. Future Gener. Comput. Syst. 88, 735–746 (2018)spa
dcterms.references28. Chis, M.: Introduction: a survey of the evolutionary computation techniques for software engineering. In: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques, pp. 1–12. IGI Global (2010)spa
dcterms.references29. Wang, L., Shen, J.: Towards bio-inspired cost minimisation for data-intensive service provision. In: 2012 IEEE First International Conference on Services Economics, pp. 16–23. IEEE (2012)spa
dcterms.references30. Wang, J., Cao, J., Li, B., Lee, S., Sherratt, R.S.: Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks. IEEE Trans. Consum. Electron. 61(4), 438–444 (2015)spa
dcterms.references31. Chis, M., (ed.) Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques: Applications and Techniques. IGI Global (2010)spa
dcterms.references32. Sharma, T.K.: Estimating software reliability growth model parameters using opposition-based shuffled frog-leaping algorithm. In: Ray, K., Pant, M., Bandyopadhyay, A. (eds.) Soft Computing Applications, pp. 149–164. Springer, Singapore (2018)spa
dcterms.references33. Barocio, E., Regalado, J., Cuevas, E., Uribe, F., Zúñiga, P., Torres, P.J.R.: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem. IET Gener. Transm. Distrib. 11(4), 1012–1022 (2017)spa
dc.source.urlhttps://link.springer.com/chapter/10.1007/978-981-15-6648-6_27spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.identifier.doihttps://doi.org/10.1007/978-981-15-6648-6_27
dc.type.hasversioninfo:eu-repo/semantics/draftspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal